
abagen
Release 0.1.3-doc+0.g2aeab5b.dirty

abagen developers

Jul 23, 2021

CONTENTS

1 Overview 3

2 Installation requirements 5

3 Quickstart 7

4 Development and getting involved 9

5 Citing abagen 11

6 License Information 13

7 Contents 15
7.1 Installation and setup . 15
7.2 What’s new . 16
7.3 Command-line usage . 21
7.4 User guide . 25
7.5 Getting involved . 45
7.6 Citing abagen . 45
7.7 Reference API . 46

Bibliography 75

Python Module Index 77

Index 79

i

ii

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

This package provides a Python interface for fetching and working with the Allen Human Brain Atlas (AHBA) mi-
croarray expression data.

CONTENTS 1

https://human.brain-map.org/
https://circleci.com/gh/rmarkello/abagen
https://codecov.io/gh/rmarkello/abagen
https://abagen.readthedocs.io/en/stable
https://doi.org/10.5281/zenodo.3451463

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

2 CONTENTS

CHAPTER

ONE

OVERVIEW

In 2013, the Allen Institute for Brain Science released the Allen Human Brain Atlas, a dataset containing microarray
expression data collected from six human brains (Hawrylycz et al., 2012) . This dataset has offered an unprecedented
opportunity to examine the genetic underpinnings of the human brain, and has already yielded novel insight into e.g.,
adolescent brain development and functional brain organization.

However, in order to be effectively used in most analyses, the AHBA microarray expression data often needs to be (1)
collapsed into regions of interest (e.g., parcels or networks), and (2) combined across donors. While this may potentially
seem trivial, there are a number of analytic choices in these steps that can dramatically influence the resulting data and
any downstream analyses. Arnatkevičiūte et al., 2019 provided a thorough treatment of this in a recent publication,
demonstrating how the techniques and code used to prepare the raw AHBA data have varied widely across published
reports. We extended this work in a recent preprint (Markello et al., 2021) to quantify how different processing choices
can impact statistical analyses of the AHBA.

The current Python package, abagen, aims to provide reproducible workflows for processing and preparing the AHBA
microarray expression data for analysis.

3

https://human.brain-map.org/
https://www.pnas.org/content/113/32/9105.long
https://science.sciencemag.org/content/348/6240/1241.long
https://www.sciencedirect.com/science/article/pii/S1053811919300114
https://doi.org/10.1101/2021.07.08.451635

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

4 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION REQUIREMENTS

Currently, abagen works with Python 3.6+ and requires a few dependencies:

• nibabel

• numpy (>=1.14.0)

• pandas (>=0.25.0), and

• scipy

There are some additional (optional) dependencies you can install to speed up some functions:

• fastparquet, and

• python-snappy

These latter packages are primarily used to facilitate loading the (rather large!) microarray expression dataframes
provided by the Allen Institute,

For detailed information on how to install abagen, including these dependencies, refer to our installation instructions.

5

https://abagen.readthedocs.io/en/stable/installation.html

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

6 Chapter 2. Installation requirements

CHAPTER

THREE

QUICKSTART

At it’s core, using abagen is as simple as:

>>> import abagen
>>> expression = abagen.get_expression_data('myatlas.nii.gz')

where 'myatlas.nii.gz' points to a brain parcellation file.

This function can also be called from the command line with:

$ abagen --output-file expression.csv myatlas.nii.gz

For more detailed instructions on how to use abagen please refer to our user guide!

7

https://abagen.readthedocs.io/en/stable/usage.html

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

8 Chapter 3. Quickstart

CHAPTER

FOUR

DEVELOPMENT AND GETTING INVOLVED

If you’ve found a bug, are experiencing a problem, or have a question about using the package, please head on over
to our GitHub issues and make a new issue with some information about it! Someone will try and get back to you as
quickly as possible, though please note that the primary developer for abagen (@rmarkello) is a graduate student so
responses make take some time!

If you’re interested in getting involved in the project: welcome ! We’re thrilled to welcome new contributors. You
should start by reading our code of conduct; all activity on abagen should adhere to the CoC. After that, take a look
at our contributing guidelines so you’re familiar with the processes we (generally) try to follow when making changes
to the repository! Once you’re ready to jump in head on over to our issues to see if there’s anything you might like to
work on.

9

https://github.com/rmarkello/abagen/issues
https://github.com/rmarkello/abagen/blob/main/CODE_OF_CONDUCT.md
https://github.com/rmarkello/abagen/blob/main/CONTRIBUTING.md

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

10 Chapter 4. Development and getting involved

CHAPTER

FIVE

CITING ABAGEN

For up-to-date instructions on how to cite abagen please refer to our documentation.

11

https://abagen.readthedocs.io/en/stable/citing.html

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

12 Chapter 5. Citing abagen

CHAPTER

SIX

LICENSE INFORMATION

This codebase is licensed under the 3-clause BSD license. The full license can be found in the LICENSE file in the
abagen distribution.

Reannotated gene information located at abagen/data/reannotated.csv.gz and individualized donor parcella-
tions for the Desikan-Killiany atlas located at abagen/data/native_dk are taken from Arnatkevičiūte et al., 2018
and are separately licensed under the CC BY 4.0; these data can also be found on figshare.

Corrected MNI coordinates used to match AHBA tissues samples to MNI space located at abagen/data/
corrected_mni_coordinates.csv are taken from the alleninf package, provided under the 3-clause BSD license.

All microarray expression data is copyrighted under non-commercial reuse policies by the Allen Institute for Brain
Science (© 2010 Allen Institute for Brain Science. Allen Human Brain Atlas. Available from: Allen Human Brain
Atlas).

All trademarks referenced herein are property of their respective holders.

13

https://opensource.org/licenses/BSD-3-Clause
https://github.com/rmarkello/abagen/blob/main/LICENSE
https://creativecommons.org/licenses/by/4.0/legalcode
https://figshare.com/s/441295fe494375aa0c13
https://github.com/chrisfilo/alleninf
https://opensource.org/licenses/BSD-3-Clause
https://alleninstitute.org/legal/terms-use/
https://human.brain-map.org/
https://human.brain-map.org/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

14 Chapter 6. License Information

CHAPTER

SEVEN

CONTENTS

7.1 Installation and setup

Note: Using the instructions for the IO installation is highly recommended! It may take a little more set-up depending
on your operating system, but the benefits during processing are noticeable!

7.1.1 Basic installation

This package requires Python 3.6+. Assuming you have the correct version of Python installed, you can install abagen
by opening a terminal and running the following:

pip install abagen

Alternatively, you can install the most up-to-date version of from GitHub:

git clone https://github.com/rmarkello/abagen.git
cd abagen
pip install .

Important: If you are going to install the version directly from GitHub make sure that you are using the most up-to-
date documentation!

7.1.2 IO installation

The data supplied by the Allen Human Brain Atlas is quite large—on the order of ~4GB for all six donors. Because
loading these datasets into memory can be quite time-consuming, abagen has integrated support for parquet and can do
some on-the-fly conversions to speed things up. However, using parquet is completely optional, and therefore support
for it is not installed when using the “vanilla” installation procedures.

If you would like to enable parquet support, you will need to install some additional dependencies. This can be done
using pip:

pip install abagen[io]

15

https://abagen.readthedocs.io/en/latest/
https://abagen.readthedocs.io/en/latest/
https://parquet.apache.org/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Note: If you are using a Linux OS, you will need to install the libsnappy-dev (Debian) or snappy-devel (Fedora)
package before running the above installation command!

You can also install these extra packages from the GitHub source:

git clone https://github.com/rmarkello/abagen.git
cd abagen
pip install .[io]

Important: If you are going to install the version directly from GitHub make sure that you are using the most up-to-
date documentation!

7.2 What’s new

7.2.1 0.1.3 (June 18, 2021)

More bug fixes for (identified thanks to @richardajdear and @Silflame!) as well as some minor QOL updates for
getting sample-level information from workflows.

• [REF] Handle atlases w/decimal vox sizes (#197), @rmarkello

• [REF] Re-orient img in leftify_atlas() (#193), @rmarkello

• [FIX] Fixes logger error w/reports (#192), @rmarkello

• [FIX] Error with donor-specific atlases and tolerance=0 (#191), @rmarkello

• [REF] Fix coordinates of get_samples_in_mask (#189), @rmarkello

7.2.2 0.1.1 (March 29, 2021)

Small bug fix when probe_selection=’average’ and minor QOL update to check_atlas().

• [ENH] Add geometry/space option to check_atlas (#186), @rmarkello

• [FIX] Fixes ‘average’ probe selection bug (#185), @rmarkello

7.2.3 0.1 (March 25, 2021)

First minor release! :tada: This update brings some major changes to the codebase, including a massive internal
refactoring to allow handling of surface parcellations, new methods for interpolating missing data, and more!

Important: as this is our first official minor release, note that the changes in this release are not backwards compatible
with previous versions.

• [ENH] Adds interareal similarity thresholding (#184), @rmarkello

• [REF] Allow negative tolerance for surfaces (#183), @rmarkello

• [REF] Updates reports for missing param (#182), @rmarkello

• [DOC] Updates master refs to main (#181), @rmarkello

16 Chapter 7. Contents

https://abagen.readthedocs.io/en/latest/
https://abagen.readthedocs.io/en/latest/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• [ENH] Adds interpolation options for missing data (#180), @rmarkello

• [REF] Updates mouse data cache location (#179), @rmarkello

• [FIX] Bugfix for lr_mirror parameter (#178), @rmarkello

• [ENH] Adds reporting of processing methods (#177), @rmarkello

• [FIX] Nan hemisphere designation (#176), @rmarkello

• [FIX] Addresses bug when tolerance=0 (#175), @rmarkello

• [TEST] Add py3.8 to azure tests (#174), @rmarkello

• [REF] Constrains centroid matching by atlas_info (#173), @rmarkello

• [REF] Updates CLI to match main workflow (#172), @rmarkello

• [REF] Modifies lr_mirror to accept single hemisphere mirroring (#171), @rmarkello

• [ENH] Add norm_structures parameter (#170), @rmarkello

• [ENH] Adds ability to handle surface parcellations (#169), @rmarkello

• [TEST] Parametrize test_resid_dist (#164), @4lovi4

7.2.4 0.0.8 (January 29, 2021)

Largely internal codebase changes, but an important bug fix for compatibility with newer versions of pandas.

Huge thanks to @4lovi4 for all their contributions!

• [FIX] Read_csv error when using pandas >= 1.2.0 (#167), @rmarkello

• [TEST] Change Azure VM image to fix SSL (#165), @rmarkello

• Adds Python 3.8 testing support to CircleCI (#163), @4lovi4

• issue #73 unquote url (#162), @4lovi4

• issue #80 doc string fix (#161), @4lovi4

• issue #139 readme fix (#160), @4lovi4

7.2.5 0.0.7 (October 15, 2020)

Only two changes—but relatively impactful ones—including the addition of a new workflow-style function (abagen.
get_samples_in_mask()) to get preprocessed tissue samples without aggregating in specific brain regions and the
ability to provide parcellations in donor-native space (rather than MNI space).

Documentation has been updated to reflect all new features!

• [ENH] Adds handling for donor-specific atlases (#156), @rmarkello

• [ENH] Allows users to get microarray samples in mask (#155), @rmarkello

7.2. What’s new 17

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

7.2.6 0.0.6 (August 17, 2020)

Minor bug fixes, including:

• [FIX] Allow None input to CLI norm opts (#153), @rmarkello

• [MNT] Pin minimum pandas version to 0.25 (#151), @rmarkello

• [DOC] Adds Fulcher norm ref (#149), @rmarkello

• [FIX] Always remap annotation dataframe cols (#147), @rmarkello

• [FIX] Allow ‘common’ for donor_probes method (#146), @rmarkello

7.2.7 0.0.5 (March 24, 2020)

This release includes quite a bit of new functionality, including:

• Several new gene/sample normalization methods,

• A fetcher / new loader functions for RNAseq data (abagen.fetch_rnaseq()),

• The ability to use RNAseq data for selecting probes (probe_selection='rnaseq), and

• A new donor_probes parameter for abagen.get_expression_data() to control how probe selection is per-
formed

Check out the documentation for more details!

• [ENH] Adds new mechanisms for probe selection (#145), @rmarkello

• [ENH,REF] Adds RNAseq probe selection method (#144), @rmarkello

• [TEST] Fix Azure maybe? (#143), @rmarkello

• [ENH] Adds FreeSurfer data fetcher (#142), @rmarkello

• [ENH] Adds fetchers / loaders for RNAseq data (#140), @rmarkello

• [TEST] Adds Windows testing with Azure (#141), @rmarkello

• [FIX,ENH] Error in get_expression_data, gene stability calculation (#136), @rmarkello

• [ENH,REF] New norms, utils, renamed modules (#135), @rmarkello

7.2.8 0.0.4 (February 26, 2020)

A release with a small bugfixes (#134) and a small fix-fix (#133)!

• [FIX] Coerce atlas dataobj to arr before indexing (#134), @rmarkello

• [REF] Drop probes with invalid/missing Entrez ID (#133), @rmarkello

18 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

7.2.9 0.0.3 (November 26, 2019)

A new release with some added features but primarily a good bit of re-arranging in the primary abagen.
get_expression_data() workflow. Notable changes include:

• New parameters region_agg, agg_metric, sample_norm, and gene_norm (the latter of which supplants
donor_norm), controlling how microarray samples are normalized and aggregated across donors;

• Large reductions in memory usage (#130), such that the primary workflow should only use ~2GB of RAM at its
peak; and,

• Migration to CircleCI for all testing purposes!

Special thanks to @rhannema, @Ellen8780, @gifuni, and @VinceBaz for their contributions.

• [REF] Adds option to suppress norm warnings (#132), @rmarkello

• [ENH,REF] Adds new region_agg parameter (#131), @rmarkello

• [REF] Massive reduction in memory usage (#130), @rmarkello

• [FIX] Solves pandas bug with max_variance method (#128), @gifuni

• [STY] Fixes trailing whitespace (#129), @rmarkello

• [FIX] Fixes strange TypeError for pc_loading (#1), @rmarkello

• [REF] Ensures integer DataFrame when return_count=True (#127), @rhannema

• [ENH] Add fetcher for donor info (#126), @Ellen8780

• [REF,ENH] Modifies and adds normalization procedures (#119), @rmarkello

• [TEST] Updating CircleCI build (#122), @rmarkello

• [TEST] TravisCI –> CircleCI (#121), @rmarkello

• [REF] Removes .get_data() nibabel calls (#120), @rmarkello

• [FIX] Specify engine=’python’ in pandas queries (#117), @VinceBaz

7.2.10 0.0.2 (September 19, 2019)

This release comes with a lot of new changes, including:

• Several new arguments for abagen.get_expression_data(), including new probe selection methods, donor
normalization techniques, and hemispheric mirroring of tissue samples;

• A command-line version of the primary workflow accessible via the abagen command;

• Improved data handling, using $HOME/abagen-data as the default storage location for data from the AHBA;

• New functionality for fetching raw AHBA donor MRI scans;

• Zenodo integration to make it easy to cite abagen; and,

• Massive documentation overhauls, with a dramatically updated user guide and API reference!

Special thanks to Golia Shafiei (@gshafiei), Ying-Qiu Zheng (@yingqiuz), James Frierson (@JamesFrierson1), and
Arda Kosar (@abkosar) for their contributions.

• [MNT] Finishes Zenodo integration (#109), @rmarkello

• [MNT] Adds framework for Zenodo integration (#108), @rmarkello

• [REF] Fixes one-donor bug in get_expression_data() (#107), @rmarkello

7.2. What’s new 19

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• [REF] Identifies hippocampus as subcortex in Allen ontology (#106), @rmarkello

• [DOC] Updates documentation + contributing (#105), @rmarkello

• [REF] Mirroring before probe filtering (#101), @rmarkello

• [FIX] Installation not correctly bundling package data (#102), @rmarkello

• [MNT] Docs / package structure updates in prep for 0.2.0 (#95), @rmarkello

• [REF] abagen.io functions don’t copy dataframes by default (#94), @rmarkello

• [FIX] Fixes broken include directive in API reference (#91), @rmarkello

• [ENH] Adds parameter for normalizing donor microarray expression values (#90), @rmarkello

• [ENH] Adds option to mirror samples across L/R hemispheres (#87), @rmarkello

• [ENH] Adds CLI for abagen.get_expression_data functionality (#82), @rmarkello

• [ENH] Adds ability to fetch raw AHBA MRIs (#85), @rmarkello

• [ENH] Adds ability to query gene groups (#83), @rmarkello

• [MNT,REF] Updates install, versioning, dependencies (#84), @rmarkello

• [REF] Adds brainstem to abagen.process ontology (#81), @rmarkello

• [DOC] Updates API documentation (#76), @rmarkello

• [REF,ENH] Adds new abagen.probes module (#67), @rmarkello

• [REF] Changes data directory locator for abagen data (#66), @rmarkello

• [FIX] Fixes doctest in abagen.mouse (#65), @rmarkello

• [REF] Removes .get_values() references (#64), @rmarkello

• [DOC] Adds logging to workflow functions (#61), @rmarkello

• Fixed abagen.mouse column ordering (#62), @abkosar

• [DOC] Update refs and http (#60), @rmarkello

• [REF] Use cached alleninf coordinates only (#59), @rmarkello

• [FIX] Removes RuntimeWarning in example code (#58), @rmarkello

• Updated README to include Allen Institute citations and disclaimers (#57), @JamesFrierson1

• [FIX] Catches AttributeError w/pandas fastparquet (#41), @rmarkello

• [REF] Updates get_expression_data() (#38), @rmarkello

• [TEST] Fixes tests (#34), @rmarkello

• Add mouse features (#32), @yingqiuz

• [TEST] Fix pytest version and update travis (#33), @rmarkello

• [TEST] Update travis testing (#31), @rmarkello

• [FIX] More fixes for atlas numbering (#30), @rmarkello

• [FIX] Allow non-sequential atlas numbering (#29), @rmarkello

• [ENH] Adds input check for remove_distance() (#28), @rmarkello

• [ENH] Allow label exclusion in remove_distance() (#27), @rmarkello

• [REF] Changes remove_distance() inputs (#26), @rmarkello

20 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• [ENH] Add function for aggregating donors (#25), @rmarkello

• [ENH] Adds reannotated probe information (#24), @rmarkello

• [ENH] Adds abagen.correct for postprocessing (#20), @rmarkello

• [TEST] Removes pytest capturing (#23), @rmarkello

• [TEST] Calculates coverage only for extras (#22), @rmarkello

• [DOC] Updates doc-strings for primary functions (#19), @rmarkello

• [TEST] Add early test to reduce timeouts (#21), @rmarkello

• [FIX] Adds updated MNI coordinates file as backup (#17), @rmarkello

• [DOC] Updates default tolerance (#16), @gshafiei

7.2.11 0.0.1 (September 7, 2018)

Initial release of abagen, a toolbox for working with the Allen Brain Atlas human genetics data.

• [DOC] Updates various documentation (#15), @rmarkello

• [DOC] Adds LICENSE reference for alleninf (#14), @rmarkello

• [DOC] Updates README links and example usage (#13), @rmarkello

• [TEST] Updates tests of abagen.get_expression_data() (#12), @rmarkello

• [DOC] Adds Sphinx documentation (#11), @rmarkello

• [FIX] Resolves dataframe formatting issue (#10), @rmarkello

• [ENH] Adds DK atlas fetcher and updates README.md (#8), @rmarkello

• [REF] Cleaning up unused code (#7), @rmarkello

• [ENH] MAJOR refactoring of IO and processing (#4), @rmarkello

• [TEST] Adds .travis.yml and initial tests (#3), @rmarkello

• [STY] Stylistic updates to abagen.datasets (#2), @rmarkello

7.3 Command-line usage

You can use many of the primary workflows in abagen from the command line.

7.3.1 The abagen command

Assigns microarray expression data to ROIs defined in the specified atlas

This command aims to provide a workflow for generating pre-processed microarray expression data from the Allen
Human Brain Atlas for arbitrary atlas designations. First, some basic filtering of genetic probes is performed, including:

1. Intensity-based filtering of microarray probes to remove probes that do not exceed a certain level of background
noise (specified via the –ibf_threshold parameter),

2. Selection of a single, representative probe (or collapsing across probes) for each gene, specified via the
–probe_selection parameter (and influenced by the –donor_probes parameter), and

7.3. Command-line usage 21

http://human.brain-map.org/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

3. Optional mirroring of the tissue samples across the left/right hemisphere boundary, as specified via the –lr_mirror
parameter (turned off by default).

Tissue samples are then matched to parcels in the defined atlas for each donor. If –atlas_info is provided then this
matching is constrained by both hemisphere and tissue class designation (e.g., cortical samples from the left hemisphere
are only matched to ROIs in the left cortex, subcortical samples from the right hemisphere are only matched to ROIs
in the left subcortex); see the atlas_info parameter description for more information.

Matching of microarray samples to parcels in atlas is done via a multi-step process:

1. Determine if the sample falls directly within a parcel,

2. Check to see if there are nearby parcels by slowly expanding the search space to include nearby voxels, up to a
specified distance (specified via the –tolerance parameter),

3. If there are multiple nearby parcels, the sample is assigned to the closest parcel, as determined by the parcel
centroid.

If at any step a sample can be assigned to a parcel the matching process is terminated. When the provided atlas is not
volumetric (i.e., is surface-based) the samples are simply matched to the nearest vertex, and –tolerance is used as a
standard deviation threshold. More control over the sample matching can be obtained by setting the –missing parameter.

Once all samples have been matched to parcels for all supplied donors, the microarray expression data are optionally nor-
malized via the provided –sample_norm and –gene_norm functions (which are influenced by the –norm_matched and
–norm_structures parameters) before being aggregated across donors via the supplied –region_agg and –agg_metric
parameters.

usage: abagen [-h] [--version] [-v] [--atlas_info PATH]
[--donors DONOR_ID [DONOR_ID ...]] [--data_dir PATH]
[--n_proc N_PROC] [--ibf_threshold THRESHOLD]
[--probe_selection METHOD] [--lr_mirror METHOD]
[--sim_threshold THRESHOLD] [--missing METHOD] [--tol TOLERANCE]
[--sample_norm METHOD] [--gene_norm METHOD] [--norm_all]
[--norm_structures] [--region_agg METHOD] [--agg_metric METHOD]
[--no-reannotated] [--no-corrected-mni] [--stdout]
[--output-file PATH] [--save-counts] [--save-donors]
atlas [atlas ...]

Positional Arguments

atlas A NIFTI image in MNI152 space or two GIFTI images in fsaverage5 space, where
each parcel is identified by a unique integer ID.

Named Arguments

--version Show program version and exit.

-v, --verbose Increase verbosity of status messages to display during workflow.

22 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Options to specify information about the atlas used

--atlas_info, --atlas-info Filepath to CSV file containing information about atlas. The CSV file must
have at least columns [“id”, “hemisphere”, “structure”] which contain information
mapping the atlas IDs to hemispheres (i.e, “L”, “R”, or “B”) and broad structural
groups (i.e., “cortex”, “subcortex/brainstem”, “cerebellum”). If provided, this
will constrain matching of tissue samples to regions in atlas. If the supplied atlas
is a pair of GIFTI files with valid label tables this information will be intuited.

Options to specify which AHBA data to use during processing

--donors List of donors to use as sources of expression data. Specified IDs can be either
donor numbers (i.e., 9861, 10021) or UIDs (i.e., H0351.2001). Can specify “all”
to use all available donors. Default: “all”

--data_dir, --data-dir Directory where expression data should be downloaded to (if it does not already
exist) / loaded from. If not specified this will check the environmental variable
$ABAGEN_DATA, the $HOME/abagen-data directory, and the current working
directory. If data does not already exist at one of those locations then it will be
downloaded to the first of these location that exists and for which write access is
enabled.

--n_proc, --n-proc Number of processors to use to download AHBA data. Can paralellize up to six
times if all donors are requested. Default: 1

Options to specify processing options

--ibf_threshold, --ibf-threshold Threshold for intensity-based filtering of probes. This number should
specify the ratio of samples, across all supplied donors, for which a probe must
have signal above background noise in order to be retained. Default: 0.5

--probe_selection, --probe-selection Possible choices: average, corr_intensity, corr_variance,
diff_stability, max_intensity, max_variance, mean, pc_loading, rnaseq

Selection method for subsetting (or collapsing across) probes that index the same
gene. Must be one of {“average”, “mean”, “max_intensity”, “max_variance”,
“pc_loading”, “corr_variance”, “corr_intensity”, “diff_stability”, “rnaseq”}. De-
fault: “diff_stability”

--lr_mirror, --lr-mirror Possible choices: None, bidirectional, leftright, rightleft

Whether to mirror microarray expression samples across hemispheres to increase
spatial coverage. Using “bidirectional” will mirror samples across both hemi-
spheres, “leftright” will mirror samples in the left hemisphere to the right, and
“rightleft” will mirror the right to the left. Default: None

--sim_threshold, --sim-threshold Threshold for inter-areal similarity filtering. Samples are correlated
across probes and those samples with a total correlation less than the the provided
threshold s.d. below the mean across samples are excluded from futheranalysis.
If not specified no filtering is performed. Default: None

--missing Possible choices: None, centroids, interpolate

How to handle regions in atlas that are not assigned any tissue samples. If “cen-
troids”, any empty regions will be assigned the expression value of the nearest
tissue sample (defined as the sample with the closest Euclidean distance to the
parcel centroid). If “interpolate”, expression values will be interpolated in the

7.3. Command-line usage 23

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

empty regions by assigning every node in the region the expression of the nearest
sample and taking a weighted (inverse distance) average. If not specified empty
regions will be returned with expression values of NaN. Default: None

--tol, --tolerance Distance (in mm) that a sample can be from a parcel for it to be matched to that
parcel. If atlas is GIFTI files then this measure is a standard deviation threshold
(i.e., samples greater than tolerance SDs away from the mean matched distance
are ignored). Default: 2

--sample_norm, --sample-norm Possible choices: center, demean, minmax, mixed_sig,
mixed_sigmoid, robust_sigmoid, rs, rsig, scaled_robust_sigmoid, scaled_rsig,
scaled_sig, scaled_sig_qnt, scaled_sigmoid, scaled_sigmoid_quantiles, sig,
sigmoid, srs, zscore, None, None

Method by which to normalize microarray expression values for each sample prior
to collapsing into regions in atlas. Expression values are normalized separately
for each sample and donor across genes. If None is specified then no normalization
is performed. Default: “srs”

--gene_norm, --gene-norm Possible choices: center, demean, minmax, mixed_sig, mixed_sigmoid,
robust_sigmoid, rs, rsig, scaled_robust_sigmoid, scaled_rsig, scaled_sig,
scaled_sig_qnt, scaled_sigmoid, scaled_sigmoid_quantiles, sig, sigmoid, srs, zs-
core, None, None

Method by which to normalize microarray expression values for each donor prior
to collapsing across donors. Expression values are normalized separately for each
gene for each donor across all expression samples. If None is specified then no
normalization is performed. Default: “srs”

--norm_all, --norm-all Whether to perform gene normalization (gene_norm) across all available sam-
ples instead of only across samples that were matched to regions in atlas. If atlas
is very small (i.e., only a few regions of interest) using –norm_all is suggested.

--norm_structures, --norm-structures Whether to perform gene normalization (gene_norm) within
structural classes (i.e., “cortex”, “subcortex/brainstem”, “cerebellum”) instead of
across all available samples.

--region_agg, --region-agg Possible choices: donors, samples

When multiple samples are identified as belonging to a region in atlas this deter-
mines how they are aggegated. If ‘samples’, expression data from all samples for
all donors assigned to a given region are combined. If ‘donors’, expression values
for all samples assigned to a given region are combined independently for each
donor before being combined across donors. See agg_metric for mechanism by
which samples are combined. Default: ‘donors’

--agg_metric, --agg-metric Possible choices: mean, median

Mechanism by which to (1) reduce expression data of multiple samples in the
same atlas region, and (2) reduce donor-level expression data into a single “group”
expression dataframe. Must be one of {“mean”, “median”}. Default: “mean”

24 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Options to modify the AHBA data used

--no-reannotated, --no_reannotated Whether to use the original probe information from the AHBA
dataset instead of the reannotated probe information from Arnatkeviciūtė et al.,
2019. Using reannotated probe information discards probes that could not be
reliably matched to genes. Default: False (i.e., use reannotations)

--no-corrected-mni, --no_corrected_mni Whether to use the original MNI coordinates provided with
the AHBA data instead of the “corrected” MNI coordinates shipped with the al-
leninf package when matching tissue samples to anatomical regions. Default:
False (i.e., use corrected coordinates)

Options to modify how data are output

--stdout Generated region x gene dataframes will be printed to stdout for piping to other
things. You should REALLY consider just using –output-file instead and working
with the generated CSV file(s). Incompatible with –save-counts and –save-donors
(i.e., this will override those options). Default: False

--output-file, --output_file Path to desired output file. The generated region x gene dataframe will be
saved here. Default: $PWD/abagen_expression.csv

--save-counts, --save_counts Whether to save dataframe containing number of samples from each
donor that were assigned to each region in atlas. If specified, will be saved to
the path specified by output-file, appending “counts” to the end of the filename.
Default: False

--save-donors, --save_donors Whether to save donor-level expression dataframes instead of aggregat-
ing expression across donors with provided agg_metric. If specified, dataframes
will be saved to path specified by output-file, appending donor IDs to the end of
the filename. Default: False

7.4 User guide

abagen aims to provide a reproducible pipeline for processing and preparing microarray expression data provided by
the Allen Human Brain Atlas (AHBA) for research analyses.

This user guide steps through the basics of fetching microarray expression data from the AHBA, defining an atlas or
parcellation for wrangling that data, and actually parcellating the data into a more usable, analyis-ready format. If you
still have questions after going through this guide you can refer to the Reference API or ask a question on GitHub.

7.4.1 The Allen Human Brain Atlas dataset

Fetching the AHBA data

In order to use abagen, you’ll need to download the AHBA microarray data. You can download it with the following
command:

>>> import abagen
>>> files = abagen.fetch_microarray(donors='all', verbose=0)

7.4. User guide 25

https://github.com/rmarkello/abagen/issues
https://human.brain-map.org/static/download

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Note: Downloading the entire dataset (about 4GB) can take a long time depending on your internet connection speed!
If you don’t want to download all the donors you can provide the subject IDs of the donors you want as a list (e.g.,
['9861', '10021']) instead of passing 'all'.

This command will download data from the specified donors into a folder called microarray in the $HOME/
abagen-data directory. If you have already downloaded the data you can provide the data_dir argument to specify
where the files have been stored:

>>> files = abagen.fetch_microarray(donors=['12876', '15496'], data_dir='/path/to/my/
→˓data/')

Alternatively, abagen will check the directory specified by the environmental variable $ABAGEN_DATA and use that as
the download location if the dataset does not already exist there.

If you provide a path to data_dir (or specify a path with $ABAGEN_DATA) the directory specified should have the
following structure:

/path/to/my/data/
normalized_microarray_donor10021/

MicroarrayExpression.csv
Ontology.csv
PACall.csv
Probes.csv
SampleAnnot.csv

normalized_microarray_donor12876/
normalized_microarray_donor14380/
normalized_microarray_donor15496/
normalized_microarray_donor15697/
normalized_microarray_donor9861/

(Note the directory does not have to be named microarray for this to work.)

Loading the AHBA data

The files object returned by abagen.fetch_microarray() is a nested dictionary with filepaths to the five different
file types in the AHBA microarray dataset. The keys are the donor IDs:

>>> print(files.keys())
dict_keys(['9861', '10021', '12876', '14380', '15496', '15697'])

And the values for each entry are a sub-dictionary of the downloaded files:

>>> print(sorted(files['9861']))
['annotation', 'microarray', 'ontology', 'pacall', 'probes']

You can load the data in these files using the abagen.io functions. There are IO functions for each of the five file
types; you can get more information on the functions and the data contained in each file type by looking at the Reference
API . Notably, all IO functions return pandas.DataFrame objects for ease-of-use.

For example, you can load the annotation file for the first donor with:

>>> data = files['9861']
>>> annotation = abagen.io.read_annotation(data['annotation'])

(continues on next page)

26 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

(continued from previous page)

>>> print(annotation)
structure_id slab_num well_id ... mni_x mni_y mni_z

sample_id ...
1 4077 22 594 ... 5.9 -27.7 49.7
2 4323 11 2985 ... 29.2 17.0 -2.9
3 4323 18 2801 ... 28.2 -22.8 16.8
...
944 4758 67 1074 ... 7.9 -72.3 -40.6
945 4760 67 1058 ... 8.3 -57.4 -59.0
946 4761 67 1145 ... 9.6 -46.7 -47.6

[946 rows x 13 columns]

And you can do the same for, e.g., the probe file with:

>>> probes = abagen.io.read_probes(data['probes'])
>>> print(probes)

probe_name gene_id gene_symbol ␣
→˓ gene_name entrez_id chromosome
probe_id
1058685 A_23_P20713 729 C8G complement component 8, gamma␣
→˓polypeptide 733 9
1058684 CUST_15185_PI416261804 731 C9 complement␣
→˓component 9 735 5
1058683 A_32_P203917 731 C9 complement␣
→˓component 9 735 5
... ␣
→˓
1071209 A_32_P885445 1012197 A_32_P885445 AGILENT probe A_32_P885445␣
→˓(non-RefSeq) <NA> NaN
1071210 A_32_P9207 1012198 A_32_P9207 AGILENT probe A_32_P9207␣
→˓(non-RefSeq) <NA> NaN
1071211 A_32_P94122 1012199 A_32_P94122 AGILENT probe A_32_P94122␣
→˓(non-RefSeq) <NA> NaN

[58692 rows x 6 columns]

The other IO functions work similarly for the remaining filetypes.

7.4.2 Defining a parcellation

Acceptable parcellations

In order to process the microarray expression data from AHBA you’ll need a parcellation (or “atlas”). Here, we define
a parcellation (atlas) as either (1) a NIFTI image in MNI space, or (2) a tuple of GIFTI images in fsaverage space
(and with fsaverage5 resolution!). In both cases, parcels in the atlas should be denoted by unique integer IDs (distinct
across hemispheres). The primary workflows in abagen are designed to readily accept any parcellations / atlases in
this format; however, if you want to use a different format please refer to Non-standard parcellations.

For demonstration purposes, abagen has a copy of the Desikan-Killiany atlas that you can use. Here, we load the
volumetric atlas by default:

7.4. User guide 27

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1088516/
https://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/ftp/articles/desikan06-parcellation.pdf

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

>>> import abagen
>>> atlas = abagen.fetch_desikan_killiany()

The returned object atlas is a dictionary with two keys: image, which is filepath to a NIFTI image containing the
atlas data, and info, which is a filepath to a CSV file containing extra information about the parcellation:

>>> print(atlas['image'])
/.../data/atlas-desikankilliany.nii.gz
>>> print(atlas['info'])
/.../data/atlas-desikankilliany.csv

You can load the surface version of the atlas by providing the surface parameter:

>>> atlas = abagen.fetch_desikan_killiany(surface=True)
>>> print(atlas['image'])
('/.../data/atlas-desikankilliany-lh.label.gii.gz', '/.../data/atlas-desikankilliany-rh.
→˓label.gii.gz')

Providing additional parcellation info

While only the image (i.e., NIFTI or GIFTIs) is required for processing the microarray data, the CSV file with infor-
mation on the parcellation scheme can also be very useful. In particular, abagen can use the CSV file to constrain the
matching of tissue samples to anatomical regions in the atlas image.

Note: If you are using a surface atlas and your GIFTI files have valid label tables then abagenwill automatically create
a pandas.DataFrame with all the relevant information described below. However, you can always provide a separate
CSV file if you are unsure and this will override any label tables present in the GIFTI files.

If you want to supply your own CSV file with information about an atlas you must ensure it has (at least) the following
columns:

1. id: an integer ID corresponding to the labels in the atlas image

2. hemisphere: a left/right/bilateral hemispheric designation (i.e., ‘L’, ‘R’, or ‘B’)

3. structure: a broad structural class designation (i.e., one of ‘cortex’, ‘subcortex/brainstem’, ‘cerebellum’, ‘white
matter’, or ‘other’)

For example, a valid CSV might look like this:

>>> import pandas as pd
>>> atlas_info = pd.read_csv(atlas['info'])
>>> print(atlas_info)

id label hemisphere structure
0 1 bankssts L cortex
1 2 caudalanteriorcingulate L cortex
2 3 caudalmiddlefrontal L cortex
..
80 81 hippocampus R subcortex/brainstem
81 82 amygdala R subcortex/brainstem
82 83 brainstem B subcortex/brainstem

[83 rows x 4 columns]

28 Chapter 7. Contents

https://www.nitrc.org/projects/gifti/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Notice that extra columns (i.e., label) are okay as long as the three required columns are present! If you want to
confirm your file is formatted correctly you can use abagen.images.check_atlas():

>>> from abagen import images
>>> atlas = abagen.fetch_desikan_killiany()
>>> atlas = images.check_atlas(atlas['image'], atlas['info']);

If something is amiss with the file this function will raise an error and try to give some information about what you
should check for.

Important: You might be asking: “why should I provide this extra information for my parcellation?” Providing
this CSV file will ensure that microarray samples designated as belonging to a given hemisphere/structure by the AHBA
ontology are not matched to regions in the atlas image with different hemispheric/structural designations. That is,
if the AHBA ontology specifies that a tissue sample comes from the left hemisphere subcortex, it will only ever be
matched to regions in atlas belonging to the left hemisphere subcortex.

While this seems trivial, it is very important because there are numerous tissue samples which occur on the boundaries
of hemispheres and structural classes (i.e., cortex/subcortex). In many instances, these samples won’t fall directly
within a region of the atlas, at which point abagen will attempt to match them to nearby regions. Without the
hemisphere/structure information provided by this CSV file there is a high likelihood of misassigning samples, leading
to biased or skewed expression data.

Individualized parcellations

Instead of providing a single parcellation image that will be used for all donors, you can instead provide a parcellation
image for each donor in the space of their “raw” (or native) T1w image. abagen ships with versions of the Desikan-
Killiany parcellation defined in donor-native space:

>>> atlas = abagen.fetch_desikan_killiany(native=True)
>>> print(atlas['image'].keys())
dict_keys(['9861', '10021', '12876', '14380', '15496', '15697'])
>>> print(atlas['image']['9861'])
/.../data/native_dk/9861/atlas-desikankilliany.nii.gz

Note here that atlas['image'] is a dictionary, where the keys are donor IDs and the corresponding values are
paths to the parcellation for each donor. The primary workflows in abagen that accept a single atlas (i.e., abagen.
get_expression_data() and abagen.get_samples_in_mask()) will also accept a dictionary of this format.

We also provide donor-specific surface atlases (derived from the FreeSurfer outputs that can be fetched with abagen.
datasets.fetch_freesurfer()). These atlases are also shipped with abagen and can be loaded with:

>>> atlas = abagen.fetch_desikan_killiany(native=True, surface=True)
>>> print(atlas['image'].keys())
dict_keys(['9861', '10021', '12876', '14380', '15496', '15697'])
>>> print(atlas['image']['9861'])
('/.../9861/atlas-desikankilliany-lh.label.gii.gz', '/.../9861/atlas-desikankilliany-rh.
→˓label.gii.gz')

Note that if you are using your own donor-specific surface atlases they must, by default, be based on the geometry of
the FreeSurfer surfaces provided with abagen.datasets.fetch_freesurfer(). If you wish to use surface atlases
based on different geometry please refer to Non-standard parcellations, below.

Finally, when in doubt we recommend simply using a standard-space, group-level atlas; however, we are actively
investigating whether native-space atlases provide any measurable benefits to the abagen workflows.

7.4. User guide 29

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Note: The donor-native volumetric versions of the DK parcellation shipped with abagen were generated by Arnatke-
vičiūte et al., 2018, NeuroImage, and are provided under the CC BY 4.0 license. The donor-native surface versions of
the DK parcellation were generated by Romero-Garcia et al., 2017, NeuroImage, and are also provided under the CC
BY 4.0 license.

Non-standard parcellations

If you’d like to use a non-standard atlas in the primary abagen workflows that may be possible—with some caveats.
That is, the constraining factor here is the coordinates of the tissue samples from the AHBA: they are available in (1)
the native space of each donor’s MRI, or (2) MNI152 space, and we strongly encourage you to use one of these options
(rather than e.g., attempting to register the coordinates to a new space). If you provide a group-level atlas the toolbox
will default to using the MNI152 coordinates; if you provide donor-specific atlases then the tooblox will use the native
coordinates. Thus, by default, abagen prefers you use one of the atlas conformations described above.

However, if you have an atlas in a different space or resolution you can (potentially) use it in the primary abagen
workflows. To do this you will need to create a abagen.AtlasTree object. All atlases provided are internally coerced
to AtlasTree instances, which is then used to assign microarray tissue samples to parcels in the atlas.

Take, for example, a surface atlas in fsaverage6 resolution (by default, surface atlases are assumed to be fsaverage5
resolution). In this case, you simply need to supply the relevant geometry files for the atlas and specify the space of the
atlas:

>>> from abagen import images
>>> atlas = ('/.../fsaverage6-lh.label.gii', '/.../fsaverage6-rh.label.gii')
>>> surf = ('/.../fsaverage6-lh.surf.gii', '/.../fsaverage6-lh.surf.gii')
>>> atlas = images.check_atlas(atlas, geometry=surf, space='fsaverage6')

The same procedure can be used for an atlas using fsLR geometry:

>>> from abagen import images
>>> atlas = ('/.../fslr32k-lh.label.gii', '/.../fslr32k-rh.label.gii')
>>> surf = ('/.../fslr32k-lh.surf.gii', '/.../fslr32k-lh.surf.gii')
>>> atlas = images.check_atlas(atlas, geometry=surf, space='fslr')

7.4.3 Parcellating expression data

Basic usage

Once you’ve downladed the microarray data and selected your parcellation you can process the data. This should be as
simple as:

>>> expression = abagen.get_expression_data(atlas['image'])

If you are using a volumetric image it is highly recommended you provide the additional information on your parcella-
tion, which can be done with:

>>> expression = abagen.get_expression_data(atlas['image'], atlas['info'])

Note: By default this function will use data from all the donors! Wrangling all this raw microarray data can be quite
time-consuming, so if you’d like to speed up this step make sure you’ve performed the IO installation. Alternatively, if

30 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

you don’t want to use all the donors when testing or debugging the code, you can provide the subject IDs of the donors
you want (e.g., donors=['9861', '10021']).

The abagen.get_expression_data() function will print out some information about what’s happening as it goes.
However, briefly the function:

1. Fetches the microarray data from AHBA (if this has not already been done). Refer to parameters data_dir and
donors for more info.

2. Updates the MNI coordinates of all the tissue samples from AHBA using the coordinates from the alleninf
package. This occurs by default; refer to parameter corrected_mni for more info.

3. Mirrors samples across hemispheres to increase spatial coverage. This does not occur by default; refer to param-
eter lr_mirror for more info (or see Duplicating samples with the lr_mirror parameter).

4. Reannotates microarray probe-to-gene mappings with information from Arnatkeviciūtė et al., 2019, NeuroImage.
This occurs by default; refer to parameter reannotated for more info.

5. Performs a similarity-based filtering of tissue samples, removing those samples whose expression across probes
is poorly correlated with other samples. This does not occur by default; refer to parameter sim_threshold for
more info.

6. Performs intensity-based filtering of probes to remove those that do not exceed background noise. This occurs
by default with a threshold of 0.5 (i.e., probes must exceed background noise in 50% of all tissue samples); refer
to parameter ibf_threshold for more info.

7. Selects a representative probe amongst those probes indexing the same gene. This occurs by default by selecting
the probe with the highest differential stability amongst donors; refer to parameter probe_selection for more
info (or see Probe selection options).

8. Matches tissue samples to regions in the user-specified atlas. Refer to parameters atlas, atlas_info,
missing, and tolerance for more info (or see Filling in data with the missing parameter).

9. Normalizes expression values for each sample across genes for each donor. This occurs by default using a scaled
robust sigmoid normalization function; refere to parameter sample_norm for more info.

10. Normalizes expression values for each gene across samples for each donor. This occurs by default using a scaled
robust sigmoid normalization function; refer to parameter gene_norm for more info.

11. Aggregates samples within regions in the user-specified atlas based on matches made in Step 7. By de-
fault, samples are averaged separately for each donor and then averaged across donors. Refer to parameters
region_agg, agg_metric, and return_donors for more info.

You can investigate all these parameters and options for modifying how the expression array is generated by looking
at the Reference API .

The parcellated expression DataFrame

The expression object returned by abagen.get_expression_data() is a pandas.DataFrame, where rows cor-
respond to region labels as defined in the atlas image, columns correspond to genes, and entry values are microarray
expression data normalized and aggregated across donors:

>>> print(expression)
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
label ...
1 0.498266 0.664570 0.395276 ... 0.675843 0.555539 0.487572
2 0.649068 0.578997 0.496142 ... 0.483165 0.382653 0.504041
3 0.530613 0.623289 0.516300 ... 0.732930 0.359707 0.450664

(continues on next page)

7.4. User guide 31

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

(continued from previous page)

...
81 0.388748 0.277961 0.474202 ... 0.279683 0.480953 0.405504
82 0.825836 0.602271 0.334143 ... 0.195722 0.447894 0.746475
83 0.384593 0.203654 0.746060 ... 0.379274 0.706803 0.509437

[83 rows x 15633 columns]

By default the data are normalized using a scaled robust sigmoid function such that expression values for a given gene
will range from 0-1, where 0 indicates the region with the lowest expression of that gene and 1 indicates the region
with highest.

Since the generated DataFrame is an aggregate (default: average) of multiple donors it is possible (likely) that a given
region may not have any expression values exactly equal to 0 or 1.

Getting dense expression data

Unfortunately, due to how tissue samples were collected from the donor brains it is possible that some regions in an
atlas may not be represented by any expression data. In the above example, two of the rows are missing data:

>>> print(expression.loc[[72, 73]])
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
label ...
72 NaN NaN NaN ... NaN NaN NaN
73 NaN NaN NaN ... NaN NaN NaN

[2 rows x 15633 columns]

These regions, corresponding to the right frontal pole (label 72) and right temporal pole (label 73) in the Desikan-
Killiany atlas, were not matched to any tissue samples; this is likely due to the fact that only two of the six donors have
tissue samples taken from the right hemisphere.

If you require a dense matrix—that is, you need expression values for every region in your atlas—there are a few
parameters that you can consider tuning to try and achieve this.

Filling in data with the missing parameter

By default, the abagen.get_expression_data() function will attempt to be as precise as possible in matching
microarray samples with brain regions. It takes the following steps to do this for each tissue sample:

1. Determine if the sample falls directly within a region of atlas.

2. Check to see if the sample is close to any regions by slowly expanding the search space (in 1mm increments) to
include nearby voxels up to a specified distance threshold (specified via the tolerance parameter).

3. If there are multiple nearby regions, determine which region is closer by calculating the center-of-mass of the
abutting regions.

If at any step a sample can be assigned to a region in atlas the sample is assigned to that region and the matching
procedure is terminated. However, as we saw, regions with no assigned samples from any donor are simply left as NaN.

If you would like to force all regions to be assigned at least one sample you can set the missing parameter. This
parameter accepts three options: None (default), "centroids", and "interpolate". By setting this parameter the
workflow will go through the normal procedure as documented above and then, once all samples are matched, check
for any empty regions and assign them expression values based on the specified method.

32 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

When using the ‘centroid’ method the empty regions in the atlas will be assigned the expression values of the tissue
sample falling closest to the centroid of that region. Note that this procedure is only performed when _all_ donors are
missing data in a given region. In this case, a weighted average of the matched samples are taken across donors, where
weights are calculated as the inverse distance between the tissue sample matched to the parcel centroid for each donor.

When using the ‘interpolate’ method, expression values will be interpolated in the empty regions by assigning every
node in the region the expression of the nearest tissue sample. The weighted (inverse distance) average of the densely-
interpolated map will be taken and used to represent parcellated expression values for the region. Note that, unlike in
the centroid matching procedure described above, this interpolation is done independently for every donor, irrespective
of whether other donors have tissue samples that fall within a given region.

Thus, setting the missing parameter when calling abagen.get_expression_data() will always return a dense
expression matrix (at the expense of some anatomical precision):

first, check with ``missing='centroids'``
>>> exp_centroids = abagen.get_expression_data(atlas['image'], atlas['info'],
... missing='centroids')
>>> print(exp_centroids.loc[[72, 73]])
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
label ...
72 0.574699 0.750184 0.246746 ... 0.656938 0.193677 0.647785
73 0.725151 0.652906 0.528831 ... 0.478334 0.501293 0.483642

[2 rows x 15633 columns]

then, check with ``missing='interpolate'``
>>> exp_interpolate = abagen.get_expression_data(atlas['image'], atlas['info'],
... missing='interpolate')
>>> print(exp_interpolate.loc[[72, 73]])
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
label ...
72 0.532308 0.710846 0.299322 ... 0.675837 0.301105 0.586290
73 0.736345 0.663072 0.497092 ... 0.507378 0.467046 0.531494

[2 rows x 15633 columns]

Warning: Refer to the documentation for normalization for additional information on how other settings interact
with the missing parameter.

Duplicating samples with the lr_mirror parameter

If your parcellation is sufficiently low-resolution it is likely that most regions in the left hemisphere (for which all six
donors have tissue samples) will be matched to at least one sample, whereas regions in the right hemisphere may come
up short.

To remedy this you can try modifying the lr_mirror parameter when calling abagen.get_expression_data().
This parameter accepts four options: None (default), "bidirectional", "leftright", and "rightleft". As the
name suggests, the lr_mirror options control whether tissue samples are mirrored across the left/right hemisphere
axis. By supplying the ‘bidirectional’ options, all samples in the left hemisphere are duplicated and mirrored onto
the right hemisphre, and vice-versa for right to left. The other options (‘leftright’ and ‘rightleft) will mirror only one
hemisphere (i.e., ‘leftright’ will mirror samples in the left onto the right hemisphere).

Unlike the missing parameter this will not guarantee that all regions are matched to a sample, but it will increase the

7.4. User guide 33

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

likelihood that this happens:

>>> exp_mirror = abagen.get_expression_data(atlas['image'], atlas['info'],
... lr_mirror='bidirectional')
>>> print(exp_mirror.loc[[72, 73]])
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
label ...
72 0.832617 0.648154 0.425707 ... 0.580406 0.439378 0.799856
73 0.682180 0.569551 0.627497 ... 0.430146 0.302926 0.425995

[2 rows x 15633 columns]

Note that since this effectively duplicates the number of tissue samples the function runtime will increase somewhat.
Also, importantly, setting the lr_mirror parameter will change the expression values of all of the regions in the
generated matrix–not just the regions that are missing data. It is worth considering which (if either!) of these options
best suits your intended analysis.

7.4.4 Probe selection options

The probes used to measure microarray expression levels in the AHBA data are often redundant; that is, there are fre-
quently several probes indexing the same gene. Since the output of the abagen.get_expression_data() workflow
is a region by gene dataframe, at some point we need to transition from indexing probe expression levels to indexing
gene expression levels. Effectively, this means we need to select from or condense the redundant probes for each gene;
however, there are a number of ways to do that.

Currently, abagen supports eight options for this probe to gene conversion. All the options have been used at various
points throughout the published record, so while there is no “right” choice we do encourage using the default option
(differential stability) due to recent work by Arnatkevičiūte et al., 2019 showing that it provides the highest fidelity to
RNA sequencing data.

Available methods for probe_selection fall into two primary families:

1. Selecting a representative probe, and

2. Collapsing across probes

We describe all the methods within these families here. Methods can be implemented by passing the
probe_selection argument to the abagen.get_expression_data() function. For a selection of references
to published works that have used these different methods please see the documentation of abagen.probes_.
collapse_probes().

Selecting a representative probe

The first group of methods aim to select a single probe from each redundant group. This involves generating some
sort of selection criteria and masking the original probe by sample expression matrix to extract only the chosen probe,
which will be used to represent the associated gene’s microarray expression values:

The only difference between methods in this group is the criteria used to select which probe to retain. The descriptions
below explain how the mask in the above diagram is generated for each available option; in each diagram the red outline
on the generated vector indicates which entry will be used to mask the original matrix. The extraction procedure (i.e.,
applying the mask to the original probe by sample expression matrix) is identical for all these methods.

34 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Max intensity

>>> abagen.get_expression_data(atlas['image'], probe_selection='max_intensity')

Selects the probe with the highest average expression across all samples (where samples are concatenated across
donors).

Max variance

>>> abagen.get_expression_data(atlas['image'], probe_selection='max_variance')

Selects the probe with the highest variance in expression across all samples (where samples are concatenated across
donors).

Principal component loading

>>> abagen.get_expression_data(atlas['image'], probe_selection='pc_loading')

Selects the probe with the highest loading on the first principal component derived from the probe microarray expression
across all samples (where samples are concatenated across donors).

7.4. User guide 35

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Correlation

>>> abagen.get_expression_data(atlas['image'], probe_selection='corr_intensity')
>>> abagen.get_expression_data(atlas['image'], probe_selection='corr_variance')

When there are more than two probes indexing the same gene, selects the probe with the highest average correlation to
other probes across all samples (where samples are concatenated across donors).

When there are exactly two probes the correlation procedure cannot be used, and so you can fall back to either the Max
intensity (corr_intensity) or the Max variance (corr_variance) criteria.

Differential stability

>>> abagen.get_expression_data(atlas['image'], probe_selection='diff_stability')

Computes the Spearman correlation of microarray expression values for each probe across brain regions for every pair
of donors. Correlations are averaged and the probe with the highest correlation is retained.

RNAseq

>>> abagen.get_expression_data(atlas['image'], probe_selection='rnaseq')

Computes the Spearman correlation of microarray expression values for each probe across brain regions with RNAseq
data for the corresponding gene. As only two donors have RNAseq data (donors #9861 and 10021), this method only
computes the correlations for these two donors. Correlations are averaged across the two donors and the probe with
the highest correlation for each gene is retained.

36 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Collapsing across probes

In contrast to selecting a single representative probe for each gene and discarding the others, we can instead opt to use
all available probes and collapse them into a unified representation of the associated gene:

Currently only one method supports this operation.

Average

>>> abagen.get_expression_data(atlas['image'], probe_selection='average')

Takes the average expression values for all probes indexing the same gene.

Providing 'mean' instead of 'average' will return identical results.

7.4.5 Donor aggregation in probe selection

Unless otherwise specified in the description of that method, probe selection is performed using data aggregated across
samples from all donors. However, this may not be desired: the probe that most reliably indexes a gene in one donor
may differ from the probe that does so in another donor.

To allow for this possibility, we describe three options for modifying how probe selection is performed across donors
in detail below. These methods can be implemented by passing the donor_probes argument to the abagen.
get_expression_data() function.

7.4. User guide 37

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Aggregate selection across donors

>>> abagen.get_expression_data(atlas['image'], donor_probes='aggregate')

The default option, this will aggregate tissue samples from all donors and apply the chosen probe_selection method
to this single probe x sample matrix. The probe chosen to represent each gene will be identical across all donors.

Independent selection for donors

>>> abagen.get_expression_data(atlas['image'], donor_probes='independent')

Performs the chosen probe_selection method independently for each donor. The probe chosen to represent each
gene may be different across donors.

Note: this option cannot be used when the specified probe_selection is one of: ‘diff_stability’, ‘rnaseq’, or ‘aver-
age’.

Most common selection across donors

>>> abagen.get_expression_data(atlas['image'], donor_probes='common')

Performs the chosen probe_selection method independently for each donor and then uses the most commonly-
selected probe to represent each gene. The probe chosen to represent each gene will be identical across all donors.

Note: this option cannot be used when the specified probe_selection is one of: ‘diff_stability’, ‘rnaseq’, or ‘aver-
age’.

7.4.6 Data normalization options

The microarray expression data provided by the AHBA has been subjected to some normalization procedures designed
to mitigate potential differences in expression values between donors due to “batch effects.” Despite these procedures,
there are still some notable differences between donors present in the downloadable data.

By default, abagen.get_expression_data() aggregates expression data across donors (though this can be pre-
vented via the return_donors parameter). Prior to aggregation, the function performs a within-donor normalization
procedure to attempt to mitigate donor-specific effects; however, there are a number of ways to achieve this.

Currently, abagen supports nine options for normalizing data:

1. Centering,

2. Z-score,

3. Min-max,

4. Sigmoid,

5. Scaled sigmoid,

6. Scaled sigmoid quantiles,

7. Robust sigmoid,

8. Scaled robust sigmoid, and

9. Mixed sigmoid

38 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Most of the options have been used at various points throughout the published record, so while there is no “right”
choice we do encourage using the default option (scaled robust sigmoid) due to recent work by Arnatkevičiūte et al.,
2019 showing that it is—as the name might suggest—robust to outlier effects commonly observed in microarray data.

We describe all the methods in detail here; these can be implemented by passing the sample_norm and gene_norm
keyword arguments to abagen.get_expression_data(). For a selection of references to published works that have
used these different methods please see the documentation of abagen.normalize_expression().

sample_norm vs gene_norm

Microarray expression data can be normalized in two directions:

1. Each sample can be normalized across all genes, or

2. Each gene can be normalized across all samples

These different forms of normalization are controlled by two parameters in the abagen.get_expression_data()
function: sample_norm and gene_norm. Note that normalization of each sample across all genes occurs before
normalization of each gene across all samples.

Both parameters can accept the same arguments (detailed below), and both are turned on by default.

Normalization methods

Centering

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='center')

Microarray values are centered with:

𝑥𝑛𝑜𝑟𝑚 = 𝑥𝑦 − �̄�

where �̄� is the mean of the microarray expression values.

Z-score

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='zscore')

Microarray values are normalized using a basic z-score function:

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑦 − �̄�

𝜎𝑥

where �̄� is the mean and 𝜎𝑥 is the sample standard deviation of the microarray expression values.

Min-max

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='minmax')

Microarray values are rescaled to the unit interval with:

𝑥𝑛𝑜𝑟𝑚 =
𝑥𝑦 − min(𝑥)

max(𝑥) − min(𝑥)

7.4. User guide 39

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Sigmoid

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='sigmoid')

Microarray values are normalized using a general sigmoid function:

𝑥𝑦 =
1

1 + exp
(︁

−(𝑥𝑦−�̄�)
𝜎𝑥

)︁
where �̄� is the mean and 𝜎𝑥 is the sample standard deviation of the microarray expression values.

Scaled sigmoid

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='scaled_sigmoid')

Microarray values are processed with the sigmoid function and then rescaled to the unit interval with the min-max
function.

Scaled sigmoid quantiles

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='scaled_sigmoid_
→˓quantiles')

Input data are clipped to the 5th and 95th percentiles before being processed with the scaled sigmoid transform. The
clipped distribution is only used for calculation of �̄� and 𝜎𝑥; the full (i.e., unclipped) distribution is processed through
the transformation.

Robust sigmoid

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='robust_sigmoid')

Microarray values are normalized using a robust sigmoid function:

𝑥𝑦 =
1

1 + exp
(︁

−(𝑥𝑦−⟨𝑥⟩)
IQR𝑥

)︁
where ⟨𝑥⟩ is the median and IQR𝑥 is the normalized interquartile range of the microarray expression values given as:

𝑒𝑟𝑓 IQR𝑥 =
𝑄3 −𝑄1

2 ·
√

2 ·−1
(︀
1
2

)︀ ≈ 𝑄3 −𝑄1

1.35

Scaled robust sigmoid

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='scaled_robust_sigmoid
→˓')

Microarray values are processed with the robust sigmoid function and then rescaled to the unit interval with the min-max
function.

40 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Mixed sigmoid

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm='mixed_sigmoid')

Microarray values are processed with the scaled sigmoid function when their interquartile range is 0; otherwise, they
are processed with the scaled robust sigmoid function.

No normalization

>>> abagen.get_expression_data(atlas['image'], {sample,gene}_norm=None)

Providing None to the sample_norm and gene_norm parameters will prevent any normalization procedure from being
performed on the data. Use this with caution!

Note: Some of the more advanced methods described on this page were initially proposed in:

Fulcher, B.F., Little, M.A., & Jones, N.S. (2013). Highly comparative time-series analysis: the empirical
structure of time series and their methods. Journal of the Royal Society Interface, 10(83), 20130048.

If using one of these methods please consider citing this paper in your work!

Applicable methods: robust sigmoid, scaled robust sigmoid, mixed sigmoid

Normalizing only matched samples

While sample normalization is _always_ performed across all genes, you can control which samples are used when
performing gene normalization. By default, only those samples matched to regions in the provided atlas are used in the
normalization process (controllable via the norm_matched parameter):

>>> abagen.get_expression_data(atlas['image'], norm_matched=True)

However, when a smaller atlas is provided with only a few regions, normalizing over just those samples matched to
the atlas can be less desirable. To make it so that all available samples are used instead of only those matched, set
norm_matched to False:

>>> abagen.get_expression_data(atlas['image'], norm_matched=False)

Warning: Given the preponderence of parameters in abagen.get_expression_data() it is perhaps unsurpris-
ing that they will interact with one another. However, it is worth pointing out that norm_matched will interact
with the missing parameter in a relatively surprising manner (hence why we feel the need to make this note). This
is due to the order in which sample-to-region matching, normalization, and “missing” regions are handled: when
norm_matched is set to True all samples not matched to regions are removed prior to normalization. As such, if
the missing parameter is set, the program is only able to fill in missing regions with samples that had already been
assigned to other regions. If, instead, norm_matched=False and the missing parameter is set, the program can
use the full range of samples to fill in missing regions. For this reason, we suggest using norm_matched=False
when also setting the missing parameter; however, we do not impose a restriction on this.

7.4. User guide 41

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Normalizing within structural classes

There are known differences in microarray expression between broad structural designations (e.g. cortex, subcor-
tex/brainstem, cerebellum). As such, it may occasionally be desirable to constrain normalization such that the proce-
dure is performed separately for each structural designation. This process can be controlled via the norm_structures
parameter:

>>> abagen.get_expression_data(atlas['image'], norm_structures=True)

By default, this parameter is set to False and normalization uses all available samples. Note that changing this pa-
rameter will _dramatically_ modify the returned expression information, so use with caution. For obvious reasons this
parameter will interact heavily with the norm_matched parameter described above.

7.4.7 Sample aggregation options

The primary goal of abagen.get_expression_data() is to allow users to aggregate the ~3,700 disparate tissue
samples from the Allen Human Brain Atlas into regions of interest defined by an atlas or parcellation file. However,
there exist several options for exactly how to aggregate samples within each region of the specified atlas.

These options are controlled via two parameters to abagen.get_expression_data(): region_agg and
agg_metric. We discuss both parameters and the different options available to each below.

The region_agg parameter

This parameter determines how samples are aggregated together to generate the expression values for a region. It can
take two values: ‘donors’ or ‘samples’.

If set to ‘donors’, expression values for all samples assigned to a region are aggregated independently for each donor
and then aggregated across donors. If set to ‘samples’, expression values for all samples for all donors assigned to a
region are aggregated simultaneously.

The agg_metric parameter

This parameter determines the actual metric used for aggregating samples into regional expression values. It can be
set to any callable function (as long as that function accepts the keyword axis argument), but generally either ‘mean’
(the default) or ‘median’ will suffice.

7.4.8 Using a binary mask

Basic usage

Sometimes, you’re not interested in aggregating microarray expression samples within regions of an atlas—you want
the actual, sample-level data instead. In this case, we provides the abagen.get_samples_in_mask() function.

To demonstrate how this works, we’ll first make a brainmask for the left parahippocampal gyrus using the region
definition from the Desikan-Killiany atlas:

>>> import nibabel as nib
>>> import pandas as pd
>>> atlas = abagen.fetch_desikan_killiany()
>>> dk = nib.load(atlas['image'])
>>> info = pd.read_csv(atlas['info'])

(continues on next page)

42 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

(continued from previous page)

>>> phg = int(info.query('label == "parahippocampal" & hemisphere == "L"')['id'])
>>> img = dk.__class__(dk.dataobj[:] == phg, dk.affine, dk.header)

We can then use this mask to obtain all the microarray samples that fall within its boundaries:

>>> expression, coords = abagen.get_samples_in_mask(mask=img)

abagen.get_samples_in_mask() returns two objects: (1) the the samples x gene expression matrix (exp), and (2) an
array of MNI coordinates for those samples (coords). Because this is using abagen.get_expression_data() under
the hood, the returned expression data have been preprocessed (i.e., filtered, normalized) according to that workflow.
As such, you can provide all the same parameters and keyword arguments to abagen.get_samples_in_mask()
as you can to abagen.get_expression_data() (with the exception of atlas which is superseded by mask and
region_agg/agg_metric which will be ignored). Refer to the API documentation) for more details!

Since the returned expression dataframe is a samples x gene matrix (rather than regions x gene), the index of the
dataframe corresponds to the unique well ID of the relevant sample (rather than the atlas region):

>>> print(expression)
gene_symbol A1BG A1BG-AS1 A2M ... ZYX ZZEF1 ZZZ3
well_id ...
2850 0.654914 0.234039 0.283280 ... 0.020379 0.228080 0.000000
998 0.428705 0.375819 0.457741 ... 0.254195 0.315383 0.502122
990 0.400673 0.409852 0.561666 ... 0.270064 0.397740 0.522261
...
159226055 0.418706 0.751837 0.087808 ... 0.651541 0.410095 0.462773
159226117 0.533079 0.773214 0.265615 ... 0.441826 0.389615 0.455249
158158343 0.362038 0.553050 0.314730 ... 0.346605 0.261426 0.337738

[43 rows x 15633 columns]

This allows you to match up the samples with additional data provided by the AHBA (e.g., ontological information) as
desired.

Get ALL the samples

If you want all of the available processed samples rather than only those within a given mask you can call the function
without providing an explicit mask (this is the default when no mask parameter is passed):

>>> expression, coords = abagen.get_samples_in_mask(mask=None)

This will return all samples (after dropping those where the listed MNI coordinates don’t match the listed hemisphere
designation, etc.).

7.4. User guide 43

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

7.4.9 Generating reporting methods

There are a lot of options and parameters to choose from when processing data with abagen.
get_expression_data() and while we’ve attempted to select reasonable defaults, we don’t want to limit
your options—you are free to pick and choose any combination of inputs to process the AHBA data! That said, we
also wanted to make it easy for you to report exactly what was done to the data based on the parameters you choose,
so to that end we have added the return_report parameter to abagen.get_expression_data().

When return_report=True, the workflow will return an extra output. That is, in addition to the default regional
microarray expression dataframe, a string will be returned that describes, in detail, all the processing that was done
to the AHBA in the process of generating the expression matrix. We have tried to write this in such a way that you
can simply copy-and-paste the provided text into the methods section of a paper, though you are of course free to edit
it as you see fit (though if you feel edits are necessary please let us know and we can modify the generation more
permanently!).

Example report

A report can be generated with:

>>> expression, report = abagen.get_expression_data(atlas['image'], atlas['info'],
... return_report=True)

Alternatively, you can use the abagen.reporting module to generate a report directly without having to re-run the
entire pipeline. (Note that the Report class accepts (nearly) all the same parameters as the get_expression_data()
workflow.)

>>> from abagen import reporting
>>> generator = reporting.Report(atlas['image'], atlas['info'])
>>> report = generator.gen_report()

The returned report (with default parameters) will look something like this example:

Regional microarry expression data were obtained from 6 post-mortem brains (1 fe-
male, ages 24.0–57.0, 42.50 +/- 13.38) provided by the Allen Human Brain Atlas (AHBA,
https://human.brain-map.org; [H2012N]). Data were processed with the abagen toolbox (version
X.Y; https://github.com/rmarkello/abagen) using a 83-region volumetric atlas in MNI space.

First, microarray probes were reannotated using data provided by [A2019N]; probes not matched to a
valid Entrez ID were discarded. Next, probes were filtered based on their expression intensity relative to
background noise [Q2002N], such that probes with intensity less than the background in >=50.00% of
samples across donors were discarded. When multiple probes indexed the expression of the same gene,
we selected and used the probe with the most consistent pattern of regional variation across donors (i.e.,
differential stability; [H2015N]), calculated with:

∆𝑆(𝑝) = 1

(𝑁
2)

∑︀𝑁−1
𝑖=1

∑︀𝑁
𝑗=𝑖+1 𝜌[𝐵𝑖(𝑝), 𝐵𝑗(𝑝)]

where 𝜌 is Spearman’s rank correlation of the expression of a single probe, p, across regions in two donor
brains 𝐵𝑖 and 𝐵𝑗 , and N is the total number of donors. Here, regions correspond to the structural desig-
nations provided in the ontology from the AHBA.

The MNI coordinates of tissue samples were updated to those generated via non-linear registration using
the Advanced Normalization Tools (ANTs; https://github.com/chrisfilo/alleninf). Samples were assigned
to brain regions in the provided atlas if their MNI coordinates were within 2 mm of a given parcel. To
reduce the potential for misassignment, sample-to-region matching was constrained by hemisphere and
gross structural divisions (i.e., cortex, subcortex/brainstem, and cerebellum, such that e.g., a sample in

44 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

the left cortex could only be assigned to an atlas parcel in the left cortex; [A2019N]). All tissue samples
not assigned to a brain region in the provided atlas were discarded.

Inter-subject variation was addressed by normalizing tissue sample expression values across genes using
a robust sigmoid function [F2013J]:

𝑥𝑛𝑜𝑟𝑚 = 1

1+exp(− (𝑥−⟨𝑥⟩)
IQR𝑥

)

where ⟨𝑥⟩ is the median and IQR𝑥 is the normalized interquartile range of the expression of a single tissue
sample across genes. Normalized expression values were then rescaled to the unit interval:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑥𝑛𝑜𝑟𝑚−min(𝑥𝑛𝑜𝑟𝑚)
max(𝑥𝑛𝑜𝑟𝑚)−min(𝑥𝑛𝑜𝑟𝑚)

Gene expression values were then normalized across tissue samples using an identical procedure. Samples
assigned to the same brain region were averaged separately for each donor and then across donors.

REFERENCES ---------- [A2019N]: Arnatkeviciūtė, A., Fulcher, B. D., & Fornito, A. (2019). A prac-
tical guide to linking brain-wide gene expression and neuroimaging data. Neuroimage, 189, 353-367.
[F2013J]: Fulcher, B. D., Little, M. A., & Jones, N. S. (2013). Highly comparative time-series analysis:
the empirical structure of time series and their methods. Journal of the Royal Society Interface, 10(83),
20130048. [H2012N]: Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L.,
Miller, J. A., . . . & Jones, A. R. (2012). An anatomically comprehensive atlas of the adult human brain
transcriptome. Nature, 489(7416), 391-399. [H2015N]: Hawrylycz, M., Miller, J. A., Menon, V., Feng,
D., Dolbeare, T., Guillozet-Bongaarts, A. L., . . . & Lein, E. (2015). Canonical genetic signatures of the
adult human brain. Nature Neuroscience, 18(12), 1832.

[Q2002N]: Quackenbush, J. (2002). Microarray data normalization and transformation. Nature Genetics,
32(4), 496-501.

Note that due to text formatting limitations in Python, relevant equations used for e.g., normalizing the expression data
will be provided in LaTeX format (i.e., surrounded by $$ characters and with TeX math commands).

Important: Please note that we explicitly release all text in the abagen.reporting module (used to generate the
above-referenced reports) under a CC0 license such that it can be used in manuscripts without modification.

7.5 Getting involved

Please refer to our contributing guidelines for a practical walkthrough on how to get involved and start contributing to
abagen.

7.6 Citing abagen

Note: We strongly encourage you to use the automatically-generated methods reports built into abagen, which will
provide a list of citations based on your selected processing options!

We’re thrilled you’ve found abagen useful in your work! Please cite the following manuscripts when referencing your
use of the toolbox:

1. Markello, RD, Arnatkeviciūtė, A, Poline, J-B, Fulcher, BD, Fornito, A, & Misic, B. (2021). Standardizing
workflows in imaging transcriptomics with the abagen toolbox. Biorxiv. doi:10.1101/2021.07.08.451635

7.5. Getting involved 45

https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/rmarkello/abagen/blob/main/CONTRIBUTING.md
https://doi.org/10.1101/2021.07.08.451635

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

2. Arnatkeviciūtė, A, Fulcher, BD, & Fornito, A. (2019). A practical guide to linking brain-wide gene expression
and neuroimaging data. NeuroImage, 189, 353-367. doi:10.1016/j.neuroimage.2019.01.011

3. Hawrylycz, MJ, Lein, ES, Guillozet-Bongaarts, AL, Shen, EH, Ng, L, Miller, JA, . . . , & Jones, AR. (2012).
An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416), 391–399.
doi:10.1038/nature11405

Additionally, to cite the specific version of the toolbox used in your analyses you can use the following Zenodo reference:

Note that this will always point to the most recent abagen release; for older releases please refer to the Zenodo listing.

For more information about why citing software is important please refer to this article from the Software Sustainability
Institute.

7.7 Reference API

List of modules

• abagen.allen - Primary workflows

• abagen.datasets - Fetching AHBA datasets

• abagen.images - Image processing functions

• abagen.correct - Post-processing corrections

• abagen.matching - Functions for matching samples

• abagen.reporting - Functions for generating reports

• abagen.io - Loading AHBA data files

• abagen.mouse - Working with the Allen Mouse Brain Atlas

7.7.1 abagen.allen - Primary workflows

Functions for mapping AHBA microarray dataset to atlases and and parcellations

abagen.get_expression_data(atlas[, . . .]) Assigns microarray expression data to ROIs defined in
atlas

abagen.get_samples_in_mask([mask]) Returns preprocessed microarray expression data for
samples in mask

abagen.get_interpolated_map(genes, mask[, . . .]) Generates dense (i.e., interpolated) expression maps for
genes

46 Chapter 7. Contents

https://doi.org/10.1016/j.neuroimage.2019.01.011
https://doi.org/10.1038/nature11405
https://zenodo.org/search?page=1&size=20&q=conceptrecid:%223451463%22&sort=-version&all_versions=True
https://www.software.ac.uk/how-cite-software

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.get_expression_data

abagen.get_expression_data(atlas, atlas_info=None, *, ibf_threshold=0.5, probe_selection='diff_stability',
donor_probes='aggregate', sim_threshold=None, lr_mirror=None, exact=None,
missing=None, tolerance=2, sample_norm='srs', gene_norm='srs',
norm_matched=True, norm_structures=False, region_agg='donors',
agg_metric='mean', corrected_mni=True, reannotated=True,
return_counts=False, return_donors=False, return_report=False, donors='all',
data_dir=None, verbose=0, n_proc=1)

Assigns microarray expression data to ROIs defined in atlas

This function aims to provide a workflow for generating pre-processed, microarray expression data from the
Allen Human Brain Atlas ([A2]) for abitrary atlas designations. First, some basic filtering of genetic probes is
performed, including:

1. Intensity-based filtering of microarray probes to remove probes that do not exceed a certain level of back-
ground noise (specified via the ibf_threshold parameter),

2. Selection of a single, representative probe (or collapsing across probes) for each gene, specified via the
probe_selection parameter (and influenced by the donor_probes parameter), and

3. Optional mirroring of the tissue samples across the left/right hemisphere boundary, as specified via the
lr_mirror parameter (turned off by default).

Tissue samples are then matched to parcels in the defined atlas for each donor. If atlas_info is provided then
this matching is constrained by both hemisphere and tissue class designation (e.g., cortical samples from the left
hemisphere are only matched to ROIs in the left cortex, subcortical samples from the right hemisphere are only
matched to ROIs in the left subcortex); see the atlas_info parameter description for more information.

Matching of microarray samples to parcels in atlas is done via a multi- step process:

1. Determine if the sample falls directly within a parcel,

2. Check to see if there are nearby parcels by slowly expanding the search space to include nearby voxels, up
to a specified distance (specified via the tolerance parameter),

3. If there are multiple nearby parcels, the sample is assigned to the closest parcel, as determined by the parcel
centroid.

If at any step a sample can be assigned to a parcel the matching process is terminated. When the provided atlas is
not volumetric (i.e., surface-based) the samples are simply matched to the nearest vertex, and tolerance is used
as a standard deviation threshold. More control over the sample matching can be obtained by setting the exact
parameter; see the parameter description for more information.

Once all samples have been matched to parcels for all supplied donors, the microarray expression data are
optionally normalized via the provided sample_norm and gene_norm functions (which are influenced by the
norm_matched and norm_structures parameters) before being aggregated across donors via the supplied re-
gion_agg and agg_metric parameters.

Parameters

• atlas (niimg-like object or dict) – A parcellation image in MNI space or a tuple
of GIFTI images in fsaverage5 space, where each parcel is identified by a unique integer ID.
Alternatively, a dictionary where keys are donor IDs and values are parcellation images (or
surfaces) in the native space of each donor.

• atlas_info (os.PathLike or pandas.DataFrame, optional) – Filepath to or pre-
loaded dataframe containing information about atlas. Must have at least columns ‘id’, ‘hemi-
sphere’, and ‘structure’ containing information mapping atlas IDs to hemisphere (i.e, “L”,
“R”, “B”) and broad structural class (i.e., “cortex”, “subcortex/brainstem”, “cerebellum”).
If provided, this will constrain matching of tissue samples to regions in atlas. If atlas is a

7.7. Reference API 47

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/os.html#os.PathLike
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

tuple of GIFTI images with valid label tables this will be intuited from the data. Default:
None

• ibf_threshold ([0, 1] float, optional) – Threshold for intensity-based filtering.
This number specifies the ratio of samples, across all supplied donors, for which a probe
must have signal significantly greater than background noise in order to be retained. Default:
0.5

• probe_selection (str, optional) – Selection method for subsetting (or collapsing
across) probes that index the same gene. Must be one of ‘average’, ‘max_intensity’,
‘max_variance’, ‘pc_loading’, ‘corr_variance’, ‘corr_intensity’, or ‘diff_stability’, ‘rnaseq’;
see Notes for more information on different options. Default: ‘diff_stability’

• donor_probes ({'aggregate', 'independent', 'common'}, optional) – Whether
specified probe_selection method should be performed with microarray data from all donors
(‘aggregate’), independently for each donor (‘independent’), or based on the most common
selected probe across donors (‘common’). Not all combinations of probe_selection and
donor_probes methods are viable. Default: ‘aggregate’

• sim_threshold ((0, inf) float, optional) – Threshold for inter-areal similarity fil-
tering. Samples are correlated across probes and those samples with a total correlation less
than sim_threshold standard deviations below the mean across samples are excluded from
futher analysis. If not specified no filtering is performed. Default: None

• lr_mirror ({None, 'bidirectional', 'leftright', 'rightleft'}, optional) –
Whether to mirror microarray expression samples across hemispheres to increase spatial
coverage. Using ‘bidirectional’ will mirror samples across both hemispheres, ‘leftright’ will
mirror samples in the left hemisphere to the right, and ‘rightleft’ will mirror the right to the
left. Default: None

• missing ({'centroids', 'interpolate', None}, optional) – How to handle regions
in atlas that are not assigned any tissue samples. If ‘centroids’, any empty regions will be
assigned the expression value of the nearest tissue sample (defined as the sample with the
closest Euclidean distance to the parcel centroid). If ‘interpolate’, expression values will be
interpolated in the empty regions by assigning every node in the region the expression of
the nearest sample and taking a weighted (inverse distance) average. If not specified empty
regions will be returned with expression values of NaN. Default: None

• tolerance (int, optional) – Distance (in mm) that a sample must be from a parcel for it
to be matched to that parcel. If atlas is a tuple of surface files then this measure is a standard
deviation threshold (i.e., samples greater than tolerance SDs away from the mean matched
distance are ignored). Default: 2

• sample_norm ({'rs', 'srs', 'minmax', 'center', 'zscore', None}, optional) –
Method by which to normalize microarray expression values for each sample. Expression
values are normalized separately for each sample and donor across all genes; see Notes
for more information on different methods. If None is specified then no normalization is
performed. Default: ‘srs’

• gene_norm ({'rs', 'srs', 'minmax', 'center', 'zscore', None}, optional) –
Method by which to normalize microarray expression values for each donor. Expression
values are normalized separately for each gene and donor across all samples; see Notes
for more information on different methods. If None is specified then no normalization is
performed. Default: ‘srs’

• norm_matched (bool, optional) – Whether to perform gene normalization (gene_norm)
across only those samples matched to regions in atlas instead of all available samples. If atlas
is very small (i.e., only a few regions of interest), using norm_matched=False is suggested.
Default: True

48 Chapter 7. Contents

https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• norm_structures (bool, optional) – Whether to perform gene normalization
(gene_norm) within structural classes (i.e., ‘cortex’, ‘subcortex/brainstem’, ‘cerebellum’) in-
stead of across all available samples. Default: False

• region_agg ({'samples', 'donors'}, optional) – When multiple samples are identi-
fied as belonging to a region in atlas this determines how they are aggegated. If ‘samples’,
expression data from all samples for all donors assigned to a given region are combined. If
‘donors’, expression values for all samples assigned to a given region are combined indepen-
dently for each donor before being combined across donors. See agg_metric for mechanism
by which samples are combined. Default: ‘donors’

• agg_metric ({'mean', 'median'} or callable, optional) – Mechanism by which to
reduce sample-level expression data into region- level expression (see region_agg). If a
callable, should be able to accept an N-dimensional input and the axis keyword argument
and return an N-1-dimensional output. Default: ‘mean’

• corrected_mni (bool, optional) – Whether to use the “corrected” MNI coordinates
shipped with the alleninf package instead of the coordinates provided with the AHBA data
when matching tissue samples to anatomical regions. Default: True

• reannotated (bool, optional) – Whether to use reannotated probe information pro-
vided by [A1] instead of the default probe information from the AHBA dataset. Using rean-
notated information will discard probes that could not be reliably matched to genes. Default:
True

• return_counts (bool, optional) – Whether to return dataframe containing information
on how many samples were assigned to each parcel in atlas for each donor. Default: False

• return_donors (bool, optional) – Whether to return donor-level expression arrays in-
stead of aggregating expression across donors with provided agg_metric. Default: False

• return_report (bool, optional) – Whether to return a string containing longform text
describing the processing procedures used to generate the expression DataFrames returned
by this function. Default: False

• donors (list, optional) – List of donors to use as sources of expression data. Can be
either donor numbers or UID. If not specified will use all available donors. Note that donors
‘9861’ and ‘10021’ have samples from both left + right hemispheres; all other donors have
samples from the left hemisphere only. Default: ‘all’

• data_dir (os.PathLike, optional) – Directory where expression data should be down-
loaded (if it does not already exist) / loaded. If not specified will use the current directory.
Default: None

• verbose (int, optional) – Specifies verbosity of status messages to display during work-
flow. Higher numbers increase verbosity of messages while zero suppresses all messages.
Default: 1

• n_proc (int, optional) – Number of processors to use to download AHBA data. Can
parallelize up to six times. Default: 1

Returns

• expression ((R, G) pandas.DataFrame) – Microarray expression for R regions in atlas for G
genes, aggregated across donors, where the index corresponds to the unique integer IDs of
atlas and the columns are gene names. If return_donors=True then this is a list of (R, G)
dataframes, one for each donor.

• counts ((R, D) pandas.DataFrame) – Number of samples assigned to each of R re-
gions in atlas for each of D donors (if multiple donors were specified); only returned if
return_counts=True.

7.7. Reference API 49

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/os.html#os.PathLike
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• report (str) – Methods describing processing procedures implemented to generate ex-
pression, suitable to be used in a manuscript Methods section. Only returned if
return_report=True.

Notes

The following methods can be used for collapsing across probes when multiple probes are available for the same
gene:

1. probe_selection='average'

Takes the average of expression data across all probes indexing the same gene. Providing
‘mean’ as the input method will return the same thing. This method can only be used when
donor_probes=’aggregate’.

2. probe_selection='max_intensity'

Selects the probe with the maximum average expression across samples from all donors.

3. probe_selection='max_variance'

Selects the probe with the maximum variance in expression across samples from all donors.

4. probe_selection='pc_loading'

Selects the probe with the maximum loading along the first principal component of a decomposition
performed across samples from all donors.

5. probe_selection='corr_intensity'

Selects the probe with the maximum correlation to other probes from the same gene when >2 probes
exist; otherwise, uses the same procedure as max_intensity.

6. probe_selection='corr_variance'

Selects the probe with the maximum correlation to other probes from the same gene when >2 probes
exist; otherwise, uses the same procedure as max_varance.

7. probe_selection='diff_stability'

Selects the probe with the most consistent pattern of regional variation across donors (i.e., the highest
average correlation across brain regions between all pairs of donors). This method can only be used
when donor_probes=’aggregate’.

8. method='rnaseq'

Selects probes with most consistent pattern of regional variation to RNAseq data (across the two
donors with RNAseq data). This method can only be used when donor_probes=’aggregate’.

Note that for incompatible combinations of probe_selection and donor_probes (as detailed above), the
probe_selection choice will take precedence. For example, providing ``probe_selection=’diff_stability’` and
donor_probes='independent' will cause donor_probes to be reset to ‘aggregate’.

The following methods can be used for normalizing microarray expression values prior to aggregating:

1. {sample,gene}_norm=='rs'

Uses a robust sigmoid function as in [A3] to normalize values

2. {sample,gene}_norm='srs'

Same as ‘rs’ but scales output to the unit normal (i.e., range 0-1)

3. {sample,gene}_norm='minmax'

50 Chapter 7. Contents

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Scales data to the unit normal (i.e., range 0-1)

4. {sample,gene}_norm='center'

Removes the mean of expression values

5. {sample,gene}_norm='zscore'

Applies a basic z-score (subtract mean, divide by standard deviation); uses degrees of freedom equal
to one for standard deviation

References

abagen.get_samples_in_mask

abagen.get_samples_in_mask(mask=None, **kwargs)
Returns preprocessed microarray expression data for samples in mask

Uses the same processing workflow as abagen.get_expression_data() but instead of aggregating samples
within regions simply returns sample-level expression data for all samples that fall within boundaries of mask.

Parameters

• mask (niimg-like object or dict, optional) – A mask image in MNI space or a
tuple of GIFTI images in fsaverage5 space (where 0 is the background). Alternatively, a
dictionary where keys are donor IDs and values are mask images (or surfaces) in the native
space of each donor. If not supplied, all available samples will be returned. Default: None

• kwargs (key-value pairs) – All key-value pairs from abagen.
get_expression_data() except for: atlas, atlas_info, region_agg, and agg_metric,
which will be ignored. If atlas is supplied instead of mask then atlas will be used instead as
a modified binary image. If both atlas and mask are supplied then mask will be used

Returns

• expression ((S, G) pandas.DataFrame) – Microarray expression for S samples for G genes,
aggregated across donors, where the columns are gene names

• coords ((S,) numpy.ndarray) – MNI coordinates of samples in expression. Even if donor-
specific masks are provided MNI coordinates will be returned to ensure comparability be-
tween subjects

abagen.get_interpolated_map

abagen.get_interpolated_map(genes, mask, n_neighbors=10, **kwargs)
Generates dense (i.e., interpolated) expression maps for genes

Uses k-nearest neighbors regression to estimate values at every voxel or vertex in the supplied mask. Note that
by default lr_mirror is set to ‘bidirectional’ and norm_matched is set to False, unless explicitly specified.

Parameters

• genes ((G,) list-of-str) – List of gene acronyms for which dense maps are desired

• mask (niimg-like object, optional) – A mask image in MNI space or a tuple of
GIFTI images in fsaverage5 space (where 0 is the background)

• n_neighbors (int, optional) – Number of neighboring tissue samples to use when in-
terpolating data in dense map. Default: 10

7.7. Reference API 51

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#int

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• kwargs (key-value pairs) – All key-value pairs from abagen.
get_expression_data() except for: atlas, atlas_info, region_agg, and agg_metric,
which will be ignored.

Returns dense – Dictionary where keys are genes and values are dense maps in space of provided
mask

Return type (G,) dict

7.7.2 abagen.datasets - Fetching AHBA datasets

Functions for fetching data relevant to the Allen Brain Atlas human microarray dataset

abagen.fetch_desikan_killiany([native, sur-
face])

Fetches Desikan-Killiany atlas shipped with abagen

abagen.fetch_donor_info() Returns dataframe with donor demographic information
abagen.fetch_freesurfer([data_dir, donors, . . .]) Downloads FreeSurfer reconstructions of the Allen Hu-

man Brain Atlas MRIs
abagen.fetch_gene_group(group) Return list of gene acronyms belonging to provided

group
abagen.fetch_microarray([data_dir, donors, . . .]) Downloads the Allen Human Brain Atlas microarray ex-

pression dataset
abagen.fetch_raw_mri([data_dir, donors, . . .]) Downloads the “raw” Allen Human Brain Atlas

T1w/T2w MRI images
abagen.fetch_rnaseq([data_dir, donors, . . .]) Downloads RNA-sequencing data from the Allen Hu-

man Brain Atlas
abagen.datasets.fetch_fsaverage5([load]) Fetches and optionally loads fsaverage5 surface
abagen.datasets.fetch_fsnative(donors[, . . .]) Fetches and optionally loads fsnative surface of donor

abagen.fetch_desikan_killiany

abagen.fetch_desikan_killiany(native=False, surface=False, *args, **kwargs)
Fetches Desikan-Killiany atlas shipped with abagen

Parameters

• native (bool, optional) – Whether to return individualized atlases in donor native
space. Default: False

• surface (bool, optional) – Whether to return surface instead of volumetric parcella-
tion. This option is currently incompatible with native=True; instead, refer to abagen.
datasets.fetch_freesurfer() for donor-specific surface atlases. Default: False

Returns atlas – Dictionary with keys [‘image’, ‘info’] pointing to atlas image and information files.
If native then ‘image’ is a dictionary where keys are donor IDs and values are image paths. If
surface then ‘image’ is a tuple of GIFTI files (.label.gii.gz)

Return type dict

52 Chapter 7. Contents

https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

References

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., . . . & Albert, M. S. (2006).
An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions
of interest. Neuroimage, 31(3), 968-980.

Examples

>>> import abagen
>>> atlas = abagen.fetch_desikan_killiany()
>>> print(atlas['image'])
/.../abagen/data/atlas-desikankilliany.nii.gz
>>> print(atlas['info'])
/.../abagen/data/atlas-desikankilliany.csv

When fetching native-space atlases, atlas[‘image’] will be a dictionary where the keys are donor IDs and the
values are paths to the donor-specific atlases:

>>> atlas = abagen.fetch_desikan_killiany(native=True)
>>> print(atlas['image'].keys())
dict_keys(['9861', '10021', '12876', '14380', '15496', '15697'])
>>> print(atlas['image']['9861'])
/.../abagen/data/native_dk/9861/atlas-desikankilliany.nii.gz

abagen.fetch_donor_info

abagen.fetch_donor_info()
Returns dataframe with donor demographic information

Returns info – With columns [‘donor’, ‘age’, ‘sex’, ‘ethnicity’, ‘medical_conditions’,
‘post_mortem_interval_hours’] detailing basic demographic info about donors

Return type pandas.DataFrame

abagen.fetch_freesurfer

abagen.fetch_freesurfer(data_dir=None, donors=None, resume=True, verbose=1)
Downloads FreeSurfer reconstructions of the Allen Human Brain Atlas MRIs

Parameters

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• donors (list, optional) – List of donors to download; can be either donor number or
UID. Can also specify ‘all’ to download all available donors. Default: 12876

• resume (bool, optional) – Whether to resume download of a partly-downloaded file.
Default: True

• verbose (int, optional) – Verbosity level (0 means no message). Default: 1

Returns freesurfer – Dictionary where keys are donor IDs and values are paths to FreeSurfer direc-
tories for requested donors

Return type dict

7.7. Reference API 53

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

References

Romero-Garcia, R., Whitaker, K., Vasa, F., Seidlitz, J., Shinn, M., Fonagy, P., Jones, P., et al. (2017). Data
supporting NSPN publication “Structural covariance networks are coupled to expression of genes enriched in
supragranular layers of the human cortex ” [Dataset]. https://doi.org/10.17863/CAM.11392

abagen.fetch_gene_group

abagen.fetch_gene_group(group)
Return list of gene acronyms belonging to provided group

Groups are defined as in [DS1]

Parameters group ({'brain', 'neuron', 'oligodendrocyte', 'synaptome', 'layers'}) – De-
sired gene group

Returns genes – List of gene acronyms

Return type list of str

References

abagen.fetch_microarray

abagen.fetch_microarray(data_dir=None, donors=None, resume=True, verbose=1, convert=True, n_proc=1)
Downloads the Allen Human Brain Atlas microarray expression dataset

Parameters

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• donors (list, optional) – List of donors to download; can be either donor number or
UID. Can also specify ‘all’ to download all available donors. Default: 12876

• resume (bool, optional) – Whether to resume download of a partly-downloaded file.
Default: True

• verbose (int, optional) – Verbosity level (0 means no message). Default: 1

• convert (bool, optional) – Whether to convert downloaded CSV files into parquet for-
mat for faster loading in the future; only available if fastparquet and python- snappy
are installed. Default: True

• n_proc (int, optional) – Number of processes to parallelize download if multiple donors
are specified. Default: 1

Returns data – Two-level nested dictionary, where top-level keys are donor IDs and second-level
keys are [‘microarray’, ‘ontology’, ‘pacall’, ‘probes’, ‘annotation’], where corresponding values
are lists of filepaths to downloaded CSV files.

Return type dict

54 Chapter 7. Contents

https://doi.org/10.17863/CAM.11392
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

References

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., . . . & Abajian, C.
(2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416), 391.

abagen.fetch_raw_mri

abagen.fetch_raw_mri(data_dir=None, donors=None, resume=True, verbose=1)
Downloads the “raw” Allen Human Brain Atlas T1w/T2w MRI images

Parameters

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• donors (list, optional) – List of donors to download; can be either donor number or
UID. Can also specify ‘all’ to download all available donors. Default: 12876

• resume (bool, optional) – Whether to resume download of a partly-downloaded file.
Default: True

• verbose (int, optional) – Verbosity level (0 means no message). Default: 1

Returns mris – Two-level nested dictionary, where top-level keys are donor IDs and second-level
keys are [‘t1w’, ‘t2w’], where corresponding values are lists of filepaths to downloaded Nifti
files

Return type dict

abagen.fetch_rnaseq

abagen.fetch_rnaseq(data_dir=None, donors=None, resume=True, verbose=1)
Downloads RNA-sequencing data from the Allen Human Brain Atlas

Parameters

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: current directory

• donors (list, optional) – List of donors to download; can be either donor number or
UID. Can also specify ‘all’ to download all available donors (two). Default: 9861

• resume (bool, optional) – Whether to resume download of a partly-downloaded file.
Default: True

• verbose (int, optional) – Verbosity level (0 means no message). Default: 1

Returns data – Two-level nested dictionary, where top-level keys are donor IDs and second-level
keys are [‘counts’, ‘tpm’, ‘ontology’, ‘genes’, ‘annotation’], where corresponding values are lists
of filepaths to downloaded CSV files.

Return type dict

7.7. Reference API 55

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#dict

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

References

Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., . . . & Abajian, C.
(2012). An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 489(7416), 391.

abagen.datasets.fetch_fsaverage5

abagen.datasets.fetch_fsaverage5(load=True)
Fetches and optionally loads fsaverage5 surface

Parameters load (bool, optional) – Whether to pre-load files. Default: True

Returns brain – If load is True, a namedtuple where each entry in the tuple is a hemisphere, rep-
resented as a namedtuple with fields (‘vertices’, ‘faces’). If load is False, a namedtuple where
entries are filepaths.

Return type namedtuple (‘lh’, ‘rh’)

abagen.datasets.fetch_fsnative

abagen.datasets.fetch_fsnative(donors, surf='pial', load=True, data_dir=None, resume=True, verbose=1)
Fetches and optionally loads fsnative surface of donor

Parameters

• donors (str or list-of-str) – Donor(s) to download; can be either donor number or
UID. Can also specify ‘all’ to download all available donors.

• surf ({'orig', 'white', 'pial', 'inflated', 'sphere'}, optional) – Which surface
to load. Default: ‘pial’

• load (bool, optional) – Whether to pre-load files. Default: True

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• resume (bool, optional) – Whether to resume download of a partly-downloaded file.
Default: True

• verbose (int, optional) – Verbosity level (0 means no message). Default: 1

Returns brain – If load is True, a namedtuple where each entry in the tuple is a hemisphere, rep-
resented as a namedtuple with fields (‘vertices’, ‘faces’). If load is False, a namedtuple where
entries are filepaths. If multiple donors are requested a dictionary is returned where keys are
donor IDs.

Return type namedtuple (‘lh’, ‘rh’)

56 Chapter 7. Contents

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#int

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

7.7.3 abagen.images - Image processing functions

abagen.leftify_atlas(atlas) Zeroes out all ROIs in the right hemisphere of volumet-
ric atlas

abagen.check_atlas(atlas[, atlas_info, . . .]) Checks that atlas is a valid atlas
abagen.annot_to_gifti(atlas) Converts FreeSurfer-style annotation file atlas to in-

memory GIFTI image
abagen.relabel_gifti(atlas[, background, offset]) Updates GIFTI images so label IDs are consecutive

across hemispheres

abagen.leftify_atlas

abagen.leftify_atlas(atlas)
Zeroes out all ROIs in the right hemisphere of volumetric atlas

Assumes that positive X values indicate the right hemisphere (e.g., RAS+ orientation) and that the X-origin is in
the middle of the brain

Parameters atlas (str or niimg-like) – Filepath to or in-memory loaded image

Returns atlas – Loaded image with right hemisphere zeroed out

Return type niimg-like

abagen.check_atlas

abagen.check_atlas(atlas, atlas_info=None, geometry=None, space=None, donor=None, data_dir=None)
Checks that atlas is a valid atlas

Parameters

• atlas (niimg-like object or (2,) tuple-of-GIFTI) – Parcellation image or sur-
face, where voxels / vertices belonging to a given parcel are identified with a unique integer
ID

• atlas_info ({os.PathLike, pandas.DataFrame, None}, optional) – Filepath or
dataframe containing information about atlas. Must have at least columns [‘id’, ‘hemi-
sphere’, ‘structure’] containing information mapping atlas IDs to hemisphere (i.e., “L”, “R”,
“B”) and broad structural class (i.e.., “cortex”, “subcortex/brainstem”, “cerebellum”, “white
matter”, or “other”). Default: None

• geometry ((2,) tuple-of-GIFTI, optional) – Surfaces files defining geometry of at-
las, if atlas is a tuple of GIFTI images. Default: None

• space ({'fsaverage', 'fsnative', 'fslr'}, optional) – If geometry is supplied, what
space files are in. Default: None

• donor (str, optional) – If specified, indicates which donor the specified atlas belongs to.
Only relevant when atlas is surface-based, to ensure the correct geometry files are fetched.
Default: None (i.e., group-level atlas)

• data_dir (str, optional) – Directory where donor-specific FreeSurfer data should be
downloaded and unpacked. Only used if provided donor is not None. Default: $HOME/
abagen-data

Returns atlas – AtlasTree object with information about atlas and functionality for labelling coor-
dinates

7.7. Reference API 57

https://docs.python.org/3.7/library/stdtypes.html#str
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Return type abagen.AtlasTree

abagen.annot_to_gifti

abagen.annot_to_gifti(atlas)
Converts FreeSurfer-style annotation file atlas to in-memory GIFTI image

Parameters annot (os.PathLike) – Surface annotation file (.annot)

Returns gifti – Converted gifti image

Return type nib.gifti.GiftiImage

abagen.relabel_gifti

abagen.relabel_gifti(atlas, background=['unknown', 'corpuscallosum',
'Background+FreeSurfer_Defined_Medial_Wall', '???'], offset=None)

Updates GIFTI images so label IDs are consecutive across hemispheres

Parameters

• atlas ((2,) tuple-of-str) – Surface label files in GIFTI format (lh.label.gii,
rh.label.gii)

• background (list-of-str, optional) – If provided, a list of IDs in atlas that should be
set to 0 (the presumptive background value). Other IDs will be shifted so they are consecutive
(i.e., 0–N). Default: abagen.images.BACKGROUND

• offset (int, optional) – What the lowest value in atlas[1] should be not including back-
ground value. If not specified it will be purely consecutive from atlas[0]. Default: None

Returns relabelled – Re-labelled atlas files

Return type (2,) tuple-of-nib.gifti.GiftiImage

7.7.4 abagen.correct - Post-processing corrections

Functions for processing and correcting gene expression data

abagen.remove_distance(coexpression, atlas) Corrects for distance-dependent correlation effects in
coexpression

abagen.keep_stable_genes(expression[, . . .]) Removes genes in expression with differential stability <
threshold

abagen.normalize_expression(expression[, . . .]) Performs normalization on expression data

abagen.remove_distance

abagen.remove_distance(coexpression, atlas, atlas_info=None, labels=None)
Corrects for distance-dependent correlation effects in coexpression

Regresses Euclidean distance between regions in atlas from correlated gene expression array coexpression. If
atlas_info is provided different connection types (e.g., cortex-cortex, cortex-subcortex, subcortex- subcortex)
will be residualized independently.

Parameters

58 Chapter 7. Contents

https://docs.python.org/3.7/library/os.html#os.PathLike
https://docs.python.org/3.7/library/functions.html#int

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• coexpression ((R x R) array_like) – Correlated gene expression array, where R is
the number of regions, as generated with e.g., numpy.corrcoef(expression).

• atlas (niimg-like object) – A parcellation image in MNI space, where each parcel is
identified by a unique integer ID

• atlas_info (str or pandas.DataFrame, optional) – Filepath to or pre-loaded
dataframe containing information about atlas. Must have at least columns ‘id’, ‘hemisphere’,
and ‘structure’ containing information mapping atlas IDs to hemisphere (i.e, “L”, “R”) and
broad structural class (i.e., “cortex”, “subcortex”, “cerebellum”). Default: None

• labels ((N,) array_like, optional) – If only a subset N of the ROIs in atlas were
used to generate the coexpression array this array should specify which to consider. Not
specifying this may cause a ValueError if atlas and atlas_info do not match. Default: None

Returns residualized – Provided coexpression data residualized against spatial distance between
region pairs

Return type (R, R) numpy.ndarray

abagen.keep_stable_genes

abagen.keep_stable_genes(expression, threshold=0.9, percentile=True, rank=True, return_stability=False)
Removes genes in expression with differential stability < threshold

Calculates the similarity of gene expression across brain regions for every pair of donors in expression. Similarity
is averaged across donor pairs and genes whose mean similarity falls below threshold are removed.

Parameters

• expression (list of (R, G) pandas.DataFrame) – Where each entry is the microar-
ray expression of R regions across G genes for a given donor

• threshold ([0, 1] float, optional) – Minimum required average similarity (e.g,
correlation) across donors for a gene to be retained. Default: 0.1

• percentile (bool, optional) – Whether to treat threshold as a percentile instead of
an absolute cutoff. For example, threshold=0.9 and percentile=True would retain only those
genes with a differential stability in the top 10% of all genes, whereas percentile=False would
retain only those genes with differential stability > 0.9. Default: True

• rank (bool, optional) – Whether to calculate similarity as Spearman correlation instead
of Pearson correlation. Default: True

• return_stability (bool, optional) – Whether to return stability estimates for each
gene in addition to expression data. Default: False

Returns

• expression (list of (R, Gr) pandas.DataFrame) – Microarray expression for R regions across
Gr genes, where Gr is the number of retained genes

• stability ((G,) numpy.ndarray) – Stability (average correlation) of each gene across pairs of
donors. Only returned if return_stability=True

7.7. Reference API 59

https://docs.python.org/3.7/library/stdtypes.html#str
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#float
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.normalize_expression

abagen.normalize_expression(expression, norm='srs', structures=None, ignore_warn=False)
Performs normalization on expression data

Parameters

• expression (list of (S, G) pandas.DataFrame) – Microarray expression data to be
normalized, where S is samples (or regions) and G is genes

• norm (str, optional) – Function with which to normalize expression data. See Notes for
more information on options. Default: ‘scaled_robust_sigmoid’

• structures (list of (S,) pandas.DataFrame) – Structural designations of S sam-
ples (or regions) in expression. Index of provided data frames should be identical to expres-
sion and must have at least column ‘structure’. If provided, normalization will be performed
separately for each distinct structural class. Default: None

• ignore_warn (bool, optional) – Whether to suppress potential warnings raised by nor-
malization. Default: False

Returns normalized – Data from expression normalized separately for each gene

Return type list of (S, G) pandas.DataFrame

Notes

The following methods can be used for normalizing gene expression values for each donor (adapted from [PC2]):

1. norm='center'

Removes the mean of data in each column. Aliased to ‘demean’

2. norm='zscore'

Applies a basic z-score (subtract mean, divide by standard deviation) to each column; uses degrees of freedom
equal to one for standard deviation

3. norm='minmax'

Scales data in each column to the unit normal (i.e., range 0-1)

4. norm='sigmoid'

Applies a sigmoidal transform function to normalize data in each column. Aliased to ‘sig’

5. norm='scaled_sigmoid'

Combines ‘sigmoid’ and ‘minmax’. Aliased to ‘scaled_sig’

6. norm='scaled_sigmoid_quantiles'

Caps input data at the 5th and 95th percentiles before performing the ‘scaled_sigmoid’ transform. Aliased to
‘scaled_sig_qnt’

7. norm='robust_sigmoid'

Uses a robust sigmoid function ([PC1]) to normalize data in each column. Aliased to ‘rs’ and ‘rsig’

8. norm='scaled_robust_sigmoid'

Combines ‘robust_sigmoid’ and ‘minmax’. Aliased to ‘srs’ and ‘scaled_rsig’

9. norm='mixed_sigmoid'

60 Chapter 7. Contents

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Uses ‘scaled_sigmoid’ transform for columns where the IQR is 0; otherwise, uses the ‘scaled_robust_sigmoid’
transform. Aliased to ‘mixed_sig’

10. norm='batch'

Uses a linear model to remove donor effects from data. Differs from other methods in that all donors are simul-
taneously fit to the same model and data are residualized based on estimated betas. Linear model includes the
intercept but it is not removed during residualization

References

7.7.5 abagen.matching - Functions for matching samples

Structures and functions used for matching samples to atlas

abagen.AtlasTree(atlas[, coords, triangles, . . .]) Representation of a parcellation as a cKDtree for NN
lookups

abagen.AtlasTree

class abagen.AtlasTree(atlas, coords=None, *, triangles=None, atlas_info=None, group_atlas=True)
Representation of a parcellation as a cKDtree for NN lookups

Parameters

• atlas ((N,) niimg-like object or array_like) – Volumetric (niimg-like) or array
of parcellation labels. If providing an array you must provide coords as well

• coords ((N, D) array_like, optional) – Coordinates representing points in atlas. If
provided it is assumed that atlas is a surface representation (i.e., if atlas is volumetric simply
provide a niimg-like object and the coordinates will be derived from the data). Default: None

• triangles ((F, 3) array_like, optional) – If coords are derived from a surface
mesh, this array contains the indices of the nodes comprising the mesh triangles. Default:
None

• atlas_info ({os.PathLike, pandas.DataFrame, None}, optional) – Filepath or
dataframe containing information about atlas. Must have at least columns [‘id’, ‘hemi-
sphere’, ‘structure’] containing information mapping atlas IDs to hemisphere (i.e., “L” or
“R”) and broad structural class (i.e.., “cortex”, “subcortex/brainstem”, “cerebellum”, “white
matter”, or “other”). Default: None

• group_atlas (bool, optional) – Whether the provided atlas is a group atlas (in MNI
space) or a donor-level atlas (in native space). This will have an impact on how provided
sample coordinates are handled. Default: True

property atlas
Returns values of provided atlas

property atlas_info
Returns atlas info dataframe, if it exists

property centroids
Return centroids of parcels in self.atlas

property coords
Returns coordinates of underlying cKDTree

7.7. Reference API 61

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

fill_label(annotation, label, return_dist=False)
Assigns a sample in annotation to every node of label in atlas

Parameters

• annotation ((S, 3) array_like) – At a minimum, an array of XYZ coordinates must
be provided. If a full annotation dataframe is provided, then information from the data
frame (i.e., on hemisphere + structural assignments of tissue samples) is used to constrain
matching of samples (if self.atlas_info is not None).

• label (int) – Which label in self.atlas should be filled

• return_dist (bool, optional) – Whether to also return distance to mapped samples

Returns

• samples ((L,) np.ndarray) – ID of sample mapped to all L nodes in label of atlas

• distance ((L,) np.ndarray) – Distances of matched samples to nodes in label. Only returned
if return_dist=True

property graph
Returns graph of underlying parcellation

label_samples(annotation, tolerance=2)
Matches all samples in annotation to parcels in self.atlas

Attempts to place each sample provided in annotation into a parcel in self.atlas. If self.volumetric is True,
this function tries to best match samples in annotation to parcels in self.atlas by:

1. Determining if the sample falls directly within a parcel,

2. Checking to see if there are nearby parcels by slowly expanding the search space to include nearby
voxels, up to a specified distance (specified via the tolerance parameter),

3. Assigning the sample to the closest parcel if there are multiple nearby parcels, where closest is deter-
mined by the parcel centroid.

If at any step a sample can be assigned to a parcel the matching process is terminated. If there is still no
parcel for a given sample after this process the sample is provided a label of 0.

On the other hand, if self.volumetric is False, then samples are simply matched to the nearest coordinate
in self.atlas. Once matched, tolerance is treated as a standard deviation threshold. That is, all samples
are matched to the nearest vertex, and then samples whose distance to the nearest vertex are more than
tolerance s.d. above the mean distance for all samples are assigned a label of 0.

Parameters

• annotation ((S, 3) array_like) – At a minimum, an array of XYZ coordinates must
be provided. If a full annotation dataframe is provided, then information from the data
frame (i.e., on hemisphere + structural assignments of tissue samples) is used to constrain
matching of regions.

• tolerance (float, optional) – Threshold for assigning samples to parcels. Default:
2

Returns labels – Dataframe with parcel labels for each of S samples

Return type (S, 1) pandas.DataFrame

property labels
Returns unique labels in atlas

match_closest_centroids(annotation, return_dist=False)
Matches samples in annotation to closest centroids in self.atlas

62 Chapter 7. Contents

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#float
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Parameters

• annotation ((S, 3) array_like) – At a minimum, an array of XYZ coordinates must
be provided. If a full annotation dataframe is provided, then information from the data
frame (i.e., on hemisphere + structural assignments of tissue samples) is used to constrain
matching of regions (if self.atlas_info is not None).

• return_dist (bool, optional) – Whether to also return distance to matched centroids

Returns

• labels ((S,) np.ndarray) – ID of parcel with closest centroid to samples in annotation

• distance ((S,) np.ndarray) – Distances of matched centroid to samples in annotation. Only
returned if return_dist=True

property tree
Returns cKDTree constructed from provided atlas and coordinates

property triangles
Returns triangles of underlying graph (if applicable)

property volumetric
Return whether self.atlas is derived from a volumetric image

abagen.matching.get_centroids(data, coordi-
nates)

Finds centroids of data in coordinates space

abagen.matching.closest_centroid(coords, . . .) Returns index of centroids closest to coords (Euclidean
distance)

abagen.matching.get_centroids

abagen.matching.get_centroids(data, coordinates, labels=None)
Finds centroids of data in coordinates space

Parameters

• data ((N,) array_like) – Data labelling all N points in coordinates

• coordinates ((N, D) array_like) – Coordinates of data array

• labels (array_like, optional) – List of values containing labels of which to find cen-
troids. Default: all possible labels in data

Returns centroids – Where keys are labels and values are centroids

Return type dict

abagen.matching.closest_centroid

abagen.matching.closest_centroid(coords, centroids, return_dist=False)
Returns index of centroids closest to coords (Euclidean distance)

Parameters

• coord ((S, 3) array_like) – Coordinates of samples

• centroids ((N, 3) array_like) – Centroids of parcels

• return_dist (bool, optional) – Whether to also return distance of closest centroid

7.7. Reference API 63

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#dict
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Returns

• closest ((S,) np.ndarray) – Indices of closest centroid in centroids to coords

• distance ((S,) np.ndarray) – Distances of closest centroid in centroids to coords. Only re-
turned if return_dist=True

7.7.6 abagen.reporting - Functions for generating reports

Functions for generating workflow methods reports

Note: all text contained within this module is released under a CC-0 license.

abagen.Report(atlas[, atlas_info, . . .]) Generates report of methods for abagen.
get_expression_data()

abagen.Report

class abagen.Report(atlas, atlas_info=None, *, ibf_threshold=0.5, probe_selection='diff_stability',
donor_probes='aggregate', lr_mirror=None, missing=None, tolerance=2,
sample_norm='srs', gene_norm='srs', norm_matched=True, norm_structures=False,
region_agg='donors', agg_metric='mean', corrected_mni=True, reannotated=True,
donors='all', return_donors=False, data_dir=None, counts=None, n_probes=None,
n_genes=None)

Generates report of methods for abagen.get_expression_data()

Refer to the doc-string of the workflow for an overview of paramter options

gen_report()
Generates main text of report

7.7.7 abagen.io - Loading AHBA data files

Functions for loading the various files associated with the AHBA microarray and RNAseq datasets.

This also contains functionality for optionally converting the downloaded CSV files to parquet format, which provides
much faster I/O access / quicker load times.

abagen.io.read_annotation(fname[, copy]) Loads SampleAnnot.csv file found at fname
abagen.io.read_microarray(fname[, copy, par-
quet])

Loads MicroarrayExpression.csv file found at fname

abagen.io.read_ontology(fname[, copy]) Loads Ontology.csv file found at fname
abagen.io.read_pacall(fname[, copy, parquet]) Loads PACall.csv file found at fname
abagen.io.read_probes(fname[, copy]) Loads Probes.csv file found at fname
abagen.io.read_genes(fname[, copy]) Loads Genes.csv file found at fname
abagen.io.read_tpm(fname[, copy]) Loads RNAseqTPM.csv file found at fname
abagen.io.read_counts(fname[, copy]) Loads RNAseqCounts.csv file found at fname

64 Chapter 7. Contents

https://creativecommons.org/publicdomain/zero/1.0/

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.io.read_annotation

abagen.io.read_annotation(fname, copy=False)
Loads SampleAnnot.csv file found at fname

Sample annotation files contain metadata on all the tissue samples taken from a single donor brain, including the
spatial location of the samples.

This information can be used to combine samples within the same anatomical region across donors.

Parameters

• fname (str) – Path to SampleAnnot.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns annotation – Dataframe containing structural information on S samples. The row index
is the unique sample ID (integer, beginning with 1) which can be used to match data to the
information obtained with e.g., read_microarray().

Return type (S, 13) pandas.DataFrame

Notes

If the provided annotation file is from microarray expression data (obtained by, e.g., abagen.fetch_microarray()),
then the returned DataFrame will have the following columns: ‘structure_id’, ‘slab_num’, ‘well_id’, ‘slab_type’,
‘structure_acronym’, ‘structure_name’, ‘polygon_id’, ‘mri_voxel_x’, ‘mri_voxel_y’, ‘mri_voxel_z’, ‘mni_x’,
‘mni_y’, ‘mni_z’.

If the provided annotation file is from RNAseq data (obtained by, e.g., abagen.fetch_rnaseq()), then
the returned DataFrame will have the following columns: ‘RNAseq_sample_name’, ‘replicate_sample’,
‘sample_name’, ‘well_id’, ‘microarray_run_id’, ‘ontology_color’, ‘main_structure’, ‘sub_structure’, ‘struc-
ture_id’, ‘structure_acronym’, ‘hemisphere’, ‘brain’, ‘million_clusters’, ‘clip_percentage’, ‘RIN_RNA_squality’,
‘rnaseq_run_id’, ‘A.Pct’, ‘C.Pct’, ‘G.Pct’, ‘T.Pct’, ‘N.Pct’

abagen.io.read_microarray

abagen.io.read_microarray(fname, copy=False, parquet=True)
Loads MicroarrayExpression.csv file found at fname

Microarray files contain raw expression data for all the tissue samples taken from a single donor across all genetic
probes.

Parameters

• fname (str) – Path to MicroarrayExpression.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

• parquet (bool, optional) – Whether to load data from parquet file instead of CSV. If a
parquet file does not already exist then one will be created for faster loading in the future.
Only available if fastparquet and python-snappy module are installed. Default: True

Returns microarray – Dataframe containing microarray expression data, where P is probes and S is
samples. The row index is the unique probe ID assigned during processing, which can be used to
match data to the information obtained with read_probes(). The column index is the unique
sample ID (integer, beginning at 0) which can be used to match data to the information obtained
with read_annotation().

7.7. Reference API 65

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Return type (P, S) pandas.DataFrame

abagen.io.read_ontology

abagen.io.read_ontology(fname, copy=False)
Loads Ontology.csv file found at fname

Ontology files contain information on the anatomical delineations used by the Allen Institute when obtaining
samples from donor brains, and are used in their online Brain Viewer to colorize regions. These files should be
the same for every donors.

This information can be used to ensure that microarray samples are appropriately matched to anatomical regions.

Parameters

• fname (str) – Path to Ontology.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns ontology – Dataframe containing ontology information for R anatomical regions used by the
Allen Institute. Columns include: ‘id’, ‘acronym’, ‘name’, ‘parent_structure_id’, ‘hemisphere’,
‘graph_order’, ‘structure_id_path’, and ‘color_hex_triplet’.

Return type (R, 8) pandas.DataFrame

abagen.io.read_pacall

abagen.io.read_pacall(fname, copy=False, parquet=True)
Loads PACall.csv file found at fname

PA files contain a present/absent flag indicating whether the corresponding probe’s expression is above back-
ground noise. It is set to 1 when both of the following conditions are met:

1. The mean signal of the probe’s expression is significantly different from the corresponding background, as
assessed by a 2-sided t-test where p < 0.01, and

2. The difference between the background subtracted signal and the background is significant (> 2.6 * back-
ground standard deviation).

This information can be used to discard “noisy” probes that might not be contributing high-quality expression
information.

Parameters

• fname (str) – Path to PACall.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

• parquet (bool, optional) – Whether to load data from parquet file instead of CSV. If a
parquet file does not already exist then one will be created for faster loading in the future.
Only available if fastparquet and python-snappy module are installed. Default: True

Returns pacall – Dataframe containing a binary indicator determining whether expression informa-
tion for each probe exceeded background noise in a given sample, where P is probes and S is
samples. The row index is the unique probe ID assigned during processing, which can be used to
match data to the information obtained with read_probes(). The column index is the unique
sample ID (integer, beginning at 1) which can be used to match data to the information obtained
with read_annotation().

66 Chapter 7. Contents

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Return type (P, S) pandas.DataFrame

abagen.io.read_probes

abagen.io.read_probes(fname, copy=False)
Loads Probes.csv file found at fname

Probe files contain metadata on all genetic probes used in the AHBA data. These files should be the same for
every donor.

This information can be used to e.g., query expression data for certain genes, collapse data across probes from
the same gene, etc.

Parameters

• fname (str) – Path to Probes.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns probes – Dataframe containing information for P genetic probes. The row index is the
unique probe ID assigned during processing, which can be used to match metadata to informa-
tion obtained with read_microarray() and read_pacall(). Columns include ‘probe_name’,
‘gene_id’, ‘gene_symbol’, ‘gene_name’, ‘entrez_id’, and ‘chromosome’.

Return type (P, 6) pandas.DataFrame

abagen.io.read_genes

abagen.io.read_genes(fname, copy=False)
Loads Genes.csv file found at fname

Genes files contain metadata on all genes used in the RNAseq AHBA data. These files should be the same for
every donor.

Parameters

• fname (str) – Path to Genes.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns genes – Dataframe containing information for G unique genes. The row index is the
unique gene symbol which can be used to match metadata to information obtained with
read_tpm() and read_counts(). Columns include ‘gene_id’, ‘entrez_id’, ‘chromosome’,
‘strand’, ‘number_of_transcripts’, ‘median_transcriptome_length’, ‘median_genome_length’,
‘median_number_of_exons’, ‘median_gene_start’, and ‘median_gene_end’

Return type (G, 11) pandas.DataFrame

7.7. Reference API 67

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.io.read_tpm

abagen.io.read_tpm(fname, copy=False)
Loads RNAseqTPM.csv file found at fname

RNAseq TPM files contain TPM values for all the tissue samples taken from a single donor across all genes.
TPM values are scaled fragment (read) counts derived using RSEM.

Parameters

• fname (str) – Path to RNAseqTPM.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns tpm – Dataframe containing RNAseq TPM expression data, where G is genes and S is
samples. The row index is the unique gene symbol assigned during processing, which can be
used to match data to the information obtained with read_genes(). The column index is the
unique sample ID (integer, beginning at 0) which can be used to match data to the information
obtained with read_annotation().

Return type (G, S) pandas.DataFrame

abagen.io.read_counts

abagen.io.read_counts(fname, copy=False)
Loads RNAseqCounts.csv file found at fname

RNAseq count files contain fragment counts for all the tissue samples taken from a single donor across all genes.
Fragment counts can be fractional, as ambiguous reads are distributed between relevant transcripts. For present
/ absent calling, a value of zero indicates no transcript was seen.

Parameters

• fname (str) – Path to RNAseqCounts.csv file

• copy (bool, optional) – Whether to return a copy if fname is a pre-loaded pan-
das.Dataframe. Default: False

Returns tpm – Dataframe containing RNAseq count expression data, where G is genes and S is
samples. The row index is the unique gene symbol assigned during processing, which can be
used to match data to the information obtained with read_genes(). The column index is the
unique sample ID (integer, beginning at 0) which can be used to match data to the information
obtained with read_annotation().

Return type (G, S) pandas.DataFrame

7.7.8 abagen.mouse - Working with the Allen Mouse Brain Atlas

abagen.mouse.available_gene_info() Lists available attributes for abagen.mouse.
get_gene_info()

abagen.mouse.available_structure_info() Lists available attributes for abagen.mouse.
get_structure_info()

abagen.mouse.available_unionization_info() Lists attributes for abagen.mouse.
get_unionization_from_gene()

abagen.mouse.get_gene_info([id, acronym, . . .]) Queries Allen API for information about given gene
continues on next page

68 Chapter 7. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Table 9 – continued from previous page
abagen.mouse.get_structure_info([id, . . .]) Queries Allen API for information about given gene
abagen.mouse.get_structure_coordinates([id,
. . .])

Finds xyz coordinates of provided structure(s) in refer-
ence_space

abagen.mouse.get_unionization_from_gene([. . .]) Gets unionization data for provided gene(s)
abagen.mouse.fetch_allenref_genes([. . .]) Loads all genes from Allen Reference database
abagen.mouse.fetch_allenref_structures([. . .]) Loads all anatomical structures in the Allen Reference

Atlas
abagen.mouse.fetch_rubinov2015_structures([. . .])Loads subset of anatomical structures in Allen Reference

Atlas from [MI1]

abagen.mouse.available_gene_info

abagen.mouse.available_gene_info()
Lists available attributes for abagen.mouse.get_gene_info()

abagen.mouse.available_structure_info

abagen.mouse.available_structure_info()
Lists available attributes for abagen.mouse.get_structure_info()

abagen.mouse.available_unionization_info

abagen.mouse.available_unionization_info()
Lists attributes for abagen.mouse.get_unionization_from_gene()

abagen.mouse.get_gene_info

abagen.mouse.get_gene_info(id=None, acronym=None, name=None, attributes=None, verbose=False)
Queries Allen API for information about given gene

One of id, acronym, or name must be provided.

Parameters

• id (int, optional) – Numerical gene ID

• acronym (str, optional) – Short-form gene acronym (case sensitive)

• name (str, optional) – Full gene name (case sensitive)

• attributes (str or list, optional) – Which attributes / information to obtain for
the provided gene. See abagen.mouse.available_gene_info() for list of available at-
tributes to request. If not specified all available attributes will be returned. Default: None

• verbose (bool, optional) – Whether to print status messages. Default: False

Returns info – If attributes is a str, returns an int or str depending on specified attribute. If attributes
is a list, return a dict where keys are attributes and values are str or int.

Return type pandas.DataFrame

Raises ValueError – The provided gene is invalid

7.7. Reference API 69

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/exceptions.html#ValueError

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Examples

Get gene ID and name corresponding to gene acronym ‘Pdyn’:

>>> from abagen import mouse
>>> mouse.get_gene_info(acronym='Pdyn',
... attributes=['id', 'name'])

id name
acronym
Pdyn 18376 prodynorphin

You can also supply multiple genes to the query:

>>> mouse.get_gene_info(acronym=['Ace', 'Cd99'],
... attributes=['id', 'name'])

id name
acronym
Ace 11210 angiotensin I converting enzyme (peptidyl-dipe...
Cd99 163028 CD99 antigen

abagen.mouse.get_structure_info

abagen.mouse.get_structure_info(id=None, acronym=None, name=None, attributes=None, verbose=False)
Queries Allen API for information about given gene

One of structure_id, structure_acronym, or structure_name must be provided.

Parameters

• id (int, optional) – Numerical structure ID

• acronym (str, optional) – Short-form structure acronym (case sensitive)

• name (str, optional) – Full structure name (case sensitive)

• attributes (str or list, optional) – Which attributes / information to obtain for the
provided structure. See abagen.mouse.available_structure_info() for list of avail-
able attributes to request. If not specified all available attributes will be returned. Default:
None

• verbose (bool, optional) – Whether to print status messages. Default: False

Returns info – Where columns are the requested attributes and index is the provided structural iden-
tifier type (e.g., ‘id’, ‘acronym’, ‘name’)

Return type pandas.DataFrame

Raises ValueError – The provided structure is invalid

70 Chapter 7. Contents

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/exceptions.html#ValueError

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Examples

Get the full names of structures 22 and 1018:

>>> from abagen import mouse
>>> mouse.get_structure_info(id=[22, 1018],
... attributes=['acronym', 'name'])

acronym name
id
22 PTLp Posterior parietal association areas
1018 AUDv Ventral auditory area

abagen.mouse.get_structure_coordinates

abagen.mouse.get_structure_coordinates(id=None, acronym=None, name=None,
reference_space='sagittal', verbose=False)

Finds xyz coordinates of provided structure(s) in reference_space

Parameters

• id (int, optional) – Numerical structure ID

• acronym (str, optional) – Short-form structure acronym (case sensitive)

• name (str, optional) – Full structure name (case sensitive)

• reference_space ({'sagittal', 'coronal'}, optional) – Reference space from
which to extract coordinates. Default: ‘sagittal’

• verbose (bool, optional) – Whether to print status messages. Default: False

Returns coords – With columns [‘structure_id’, ‘x’, ‘y’, ‘z’]

Return type pandas.DataFrame

Examples

Get the coordinates of structure 1018:

>>> from abagen import mouse
>>> mouse.get_structure_coordinates(id=1018)

structure_id x y z
0 1018 7800 3400 1050

abagen.mouse.get_unionization_from_gene

abagen.mouse.get_unionization_from_gene(id=None, acronym=None, name=None,
slicing_direction='sagittal', structures=None, attributes=None,
average=True, verbose=False)

Gets unionization data for provided gene(s)

One of id, acronym, or name must be provided.

Parameters

• id (int, optional) – Numerical gene ID

7.7. Reference API 71

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#int

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

• acronym (str, optional) – Short-form gene acronym (case sensitive)

• name (str, optional) – Full gene name (case sensitive)

• slicing_direction ({'sagittal', 'coronal'}, optional) – Slicing direction of brain
tissue

• structures (list, optional) – List of structures (id, acronym, or name) for which to get
unionization information associated with provided experiment_id. If not specified uses struc-
tures documented in [MI1]. Specifying either the id or name is recommended as acronyms
are not unique to structures. Default: None

• attributes (str or list, optional) – Which attributes / information to obtain for
the provided gene. See abagen.mouse.available_gene_info() for list of available at-
tributes to request. If not specified then only ‘expression_density’ will be returned. Speci-
fying ‘all’ will return all information. Default: None

• average (bool, optional) – Whether to average across experiments if there are multiple
experiments corresponding to any provided gene(s). Only experiments probing the same
gene will be considered for averaging, and distinct structures will be retained. Default: True

• verbose (bool, optional) – Whether to print status messages. Default: False

Returns unionization – Where columns are unionization attributes and the index corresponds to
strucuture and gene ids (if experiments is provided as a list with multiple genes). If aver-
age=False, experiments will also be a level in index

Return type pandas.DataFrame

Examples

>>> from abagen import mouse
>>> mouse.get_unionization_from_gene(acronym='Pdyn',
... structures=[22, 31])

expression_density
gene_id structure_id
18376 22 0.024840

31 0.017199
>>> mouse.get_unionization_from_gene(acronym=['Ace', 'Cd99'],
... structures=[22, 31])

expression_density
gene_id structure_id
11210 22 0.001283

31 0.001427
163028 22 0.067537

31 0.056442

72 Chapter 7. Contents

https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/stdtypes.html#list
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.mouse.fetch_allenref_genes

abagen.mouse.fetch_allenref_genes(entry_type=None, cache=True, data_dir=None, verbose=True)
Loads all genes from Allen Reference database

Parameters

• entry_type ({'id', 'acronym', 'name'}, optional) – The type of gene identifier to
load. Specifying ‘id’ returns a list of numerical gene IDs, ‘acronym’ returns a list of short-
form gene acronyms, and ‘name’ returns full gene names. If not specified, returns a dataframe
with all information. Default: None

• cache (bool, optional) – Whether to use cached gene information (if it exists). Setting
to False will overwrite cache. Default: True

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• verbose (bool, optional) – Whether to print status message. Default: True

Returns genes – Genes in Allen Reference database

Return type list or pandas.DataFrame

Notes

May require internet access to make query to the Allen API (which will take some time); after query is made
once the results are cached.

abagen.mouse.fetch_allenref_structures

abagen.mouse.fetch_allenref_structures(entry_type=None, cache=True, data_dir=None, verbose=True)
Loads all anatomical structures in the Allen Reference Atlas

Parameters

• entry_type ({'id', 'acronym', 'name'}, optional) – The type of structural identifier
to load. Specifying ‘id’ returns a list of numerical structure IDs, ‘acronym’ returns a list
of short-form structure acronyms, and ‘name’ returns full structure names. If not specified,
returns a dataframe with all information. Default: None

• cache (bool, optional) – Whether to use cached structure information (if it exists). Set-
ting to False will overwrite cache. Default: True

• data_dir (str, optional) – Directory where data should be downloaded and unpacked.
Default: $HOME/ abagen-data

• verbose (bool, optional) – Whether to print status message. Default: True

Returns structures – Anatomical structures in Allen Reference Atlas

Return type list or pandas.DataFrame

7.7. Reference API 73

https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame
https://docs.python.org/3.7/library/functions.html#bool
https://docs.python.org/3.7/library/stdtypes.html#str
https://docs.python.org/3.7/library/functions.html#bool
https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

Notes

May require internet access to make query to the Allen API (which will take some time); after query is made
once the results are cached.

abagen.mouse.fetch_rubinov2015_structures

abagen.mouse.fetch_rubinov2015_structures(entry_type=None)
Loads subset of anatomical structures in Allen Reference Atlas from [MI1]

Parameters entry_type ({'id', 'acronym', 'name'}, optional) – The type of structural iden-
tifier to load. Specifying ‘id’ returns a list of numerical structure IDs, ‘acronym’ returns a list of
short-form structure acronyms, and ‘name’ returns full structure names. If not specified, returns
a dataframe with all information. Default: None

Returns structures – Anatomical structures in Allen Reference Atlas from [MI1]

Return type list or pandas.DataFrame

References

74 Chapter 7. Contents

https://pandas-docs.github.io/pandas-docs-travis/reference/api/pandas.DataFrame.html#pandas.DataFrame

BIBLIOGRAPHY

[A1] Arnatkeviciūtė, A., Fulcher, B. D., & Fornito, A. (2019). A practical guide to linking brain-wide gene expression
and neuroimaging data. NeuroImage, 189, 353-367.

[A2] Hawrylycz, M.J. et al. (2012) An anatomically comprehensive atlas of the adult human transcriptome. Nature,
489, 391-399.

[A3] Fulcher, B. D., & Fornito, A. (2016). A transcriptional signature of hub connectivity in the mouse connectome.
Proceedings of the National Academy of Sciences, 113(5), 1435-1440.

[DS1] Burt, J. B., Demirtaş, M., Eckner, W. J., Navejar, N. M., Ji, J. L., Martin, W. J., . . . & Murray, J. D. (2018). Hi-
erarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography.
Nature neuroscience, 21(9), 1251.

[PC1] Fulcher, B. D., & Fornito, A. (2016). A transcriptional signature of hub connectivity in the mouse connectome.
Proceedings of the National Academy of Sciences, 113(5), 1435-1440.

[PC2] Fulcher, B. D., Little, M. A., & Jones, N. S. (2013). Highly comparative time-series analysis: the empirical
structure of time series and their methods. Journal of the Royal Society Interface, 10(83), 20130048

[MI1] Rubinov, M., Ypma, R. J., Watson, C., & Bullmore, E. T. (2015). Wiring cost and topological participation of
the mouse brain connectome. Proceedings of the National Academy of Sciences, 112(32), 10032-10037.

75

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

76 Bibliography

PYTHON MODULE INDEX

a
abagen.allen, 46
abagen.correct, 58
abagen.datasets, 52
abagen.images, 57
abagen.io, 64
abagen.matching, 61
abagen.mouse, 68
abagen.reporting, 64

77

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

78 Python Module Index

INDEX

A
abagen.allen

module, 46
abagen.correct

module, 58
abagen.datasets

module, 52
abagen.images

module, 57
abagen.io

module, 64
abagen.matching

module, 61
abagen.mouse

module, 68
abagen.reporting

module, 64
annot_to_gifti() (in module abagen), 58
atlas (abagen.AtlasTree property), 61
atlas_info (abagen.AtlasTree property), 61
AtlasTree (class in abagen), 61
available_gene_info() (in module abagen.mouse),

69
available_structure_info() (in module

abagen.mouse), 69
available_unionization_info() (in module

abagen.mouse), 69

C
centroids (abagen.AtlasTree property), 61
check_atlas() (in module abagen), 57
closest_centroid() (in module abagen.matching), 63
coords (abagen.AtlasTree property), 61

F
fetch_allenref_genes() (in module abagen.mouse),

73
fetch_allenref_structures() (in module

abagen.mouse), 73
fetch_desikan_killiany() (in module abagen), 52
fetch_donor_info() (in module abagen), 53
fetch_freesurfer() (in module abagen), 53

fetch_fsaverage5() (in module abagen.datasets), 56
fetch_fsnative() (in module abagen.datasets), 56
fetch_gene_group() (in module abagen), 54
fetch_microarray() (in module abagen), 54
fetch_raw_mri() (in module abagen), 55
fetch_rnaseq() (in module abagen), 55
fetch_rubinov2015_structures() (in module

abagen.mouse), 74
fill_label() (abagen.AtlasTree method), 61

G
gen_report() (abagen.Report method), 64
get_centroids() (in module abagen.matching), 63
get_expression_data() (in module abagen), 47
get_gene_info() (in module abagen.mouse), 69
get_interpolated_map() (in module abagen), 51
get_samples_in_mask() (in module abagen), 51
get_structure_coordinates() (in module

abagen.mouse), 71
get_structure_info() (in module abagen.mouse), 70
get_unionization_from_gene() (in module

abagen.mouse), 71
graph (abagen.AtlasTree property), 62

K
keep_stable_genes() (in module abagen), 59

L
label_samples() (abagen.AtlasTree method), 62
labels (abagen.AtlasTree property), 62
leftify_atlas() (in module abagen), 57

M
match_closest_centroids() (abagen.AtlasTree

method), 62
module

abagen.allen, 46
abagen.correct, 58
abagen.datasets, 52
abagen.images, 57
abagen.io, 64
abagen.matching, 61

79

abagen, Release 0.1.3-doc+0.g2aeab5b.dirty

abagen.mouse, 68
abagen.reporting, 64

N
normalize_expression() (in module abagen), 60

R
read_annotation() (in module abagen.io), 65
read_counts() (in module abagen.io), 68
read_genes() (in module abagen.io), 67
read_microarray() (in module abagen.io), 65
read_ontology() (in module abagen.io), 66
read_pacall() (in module abagen.io), 66
read_probes() (in module abagen.io), 67
read_tpm() (in module abagen.io), 68
relabel_gifti() (in module abagen), 58
remove_distance() (in module abagen), 58
Report (class in abagen), 64

T
tree (abagen.AtlasTree property), 63
triangles (abagen.AtlasTree property), 63

V
volumetric (abagen.AtlasTree property), 63

80 Index

	Overview
	Installation requirements
	Quickstart
	Development and getting involved
	Citing abagen
	License Information
	Contents
	Installation and setup
	Basic installation
	IO installation

	What’s new
	0.1.3 (June 18, 2021)
	0.1.1 (March 29, 2021)
	0.1 (March 25, 2021)
	0.0.8 (January 29, 2021)
	0.0.7 (October 15, 2020)
	0.0.6 (August 17, 2020)
	0.0.5 (March 24, 2020)
	0.0.4 (February 26, 2020)
	0.0.3 (November 26, 2019)
	0.0.2 (September 19, 2019)
	0.0.1 (September 7, 2018)

	Command-line usage
	The abagen command
	Positional Arguments
	Named Arguments
	Options to specify information about the atlas used
	Options to specify which AHBA data to use during processing
	Options to specify processing options
	Options to modify the AHBA data used
	Options to modify how data are output

	User guide
	The Allen Human Brain Atlas dataset
	Fetching the AHBA data
	Loading the AHBA data

	Defining a parcellation
	Acceptable parcellations
	Providing additional parcellation info
	Individualized parcellations
	Non-standard parcellations

	Parcellating expression data
	Basic usage
	The parcellated expression DataFrame
	Getting dense expression data
	Filling in data with the missing parameter
	Duplicating samples with the lr_mirror parameter

	Probe selection options
	Selecting a representative probe
	Max intensity
	Max variance
	Principal component loading
	Correlation
	Differential stability
	RNAseq

	Collapsing across probes
	Average

	Donor aggregation in probe selection
	Aggregate selection across donors
	Independent selection for donors
	Most common selection across donors

	Data normalization options
	sample_norm vs gene_norm
	Normalization methods
	Centering
	Z-score
	Min-max
	Sigmoid
	Scaled sigmoid
	Scaled sigmoid quantiles
	Robust sigmoid
	Scaled robust sigmoid
	Mixed sigmoid
	No normalization

	Normalizing only matched samples
	Normalizing within structural classes

	Sample aggregation options
	The region_agg parameter
	The agg_metric parameter

	Using a binary mask
	Basic usage
	Get ALL the samples

	Generating reporting methods
	Example report

	Getting involved
	Citing abagen
	Reference API
	abagen.allen - Primary workflows
	abagen.get_expression_data
	abagen.get_samples_in_mask
	abagen.get_interpolated_map

	abagen.datasets - Fetching AHBA datasets
	abagen.fetch_desikan_killiany
	abagen.fetch_donor_info
	abagen.fetch_freesurfer
	abagen.fetch_gene_group
	abagen.fetch_microarray
	abagen.fetch_raw_mri
	abagen.fetch_rnaseq
	abagen.datasets.fetch_fsaverage5
	abagen.datasets.fetch_fsnative

	abagen.images - Image processing functions
	abagen.leftify_atlas
	abagen.check_atlas
	abagen.annot_to_gifti
	abagen.relabel_gifti

	abagen.correct - Post-processing corrections
	abagen.remove_distance
	abagen.keep_stable_genes
	abagen.normalize_expression

	abagen.matching - Functions for matching samples
	abagen.AtlasTree
	abagen.matching.get_centroids
	abagen.matching.closest_centroid

	abagen.reporting - Functions for generating reports
	abagen.Report

	abagen.io - Loading AHBA data files
	abagen.io.read_annotation
	abagen.io.read_microarray
	abagen.io.read_ontology
	abagen.io.read_pacall
	abagen.io.read_probes
	abagen.io.read_genes
	abagen.io.read_tpm
	abagen.io.read_counts

	abagen.mouse - Working with the Allen Mouse Brain Atlas
	abagen.mouse.available_gene_info
	abagen.mouse.available_structure_info
	abagen.mouse.available_unionization_info
	abagen.mouse.get_gene_info
	abagen.mouse.get_structure_info
	abagen.mouse.get_structure_coordinates
	abagen.mouse.get_unionization_from_gene
	abagen.mouse.fetch_allenref_genes
	abagen.mouse.fetch_allenref_structures
	abagen.mouse.fetch_rubinov2015_structures

	Bibliography
	Python Module Index
	Index

